Display options
Share it on

Front Syst Neurosci. 2017 Feb 08;11:3. doi: 10.3389/fnsys.2017.00003. eCollection 2017.

Plasticity of Visual Pathways and Function in the Developing Brain: Is the Pulvinar a Crucial Player?.

Frontiers in systems neuroscience

James A Bourne, Maria Concetta Morrone

Affiliations

  1. Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia.
  2. Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa and IRCCS Stella Maris Foundation Pisa, Italy.

PMID: 28228719 PMCID: PMC5296321 DOI: 10.3389/fnsys.2017.00003

Abstract

The pulvinar is the largest of the thalamic nuclei in the primates, including humans. In the primates, two of the three major subdivisions, the lateral and inferior pulvinar, are heavily interconnected with a significant proportion of the visual association cortex. However, while we now have a better understanding of the bidirectional connectivity of these pulvinar subdivisions, its functions remain somewhat of an enigma. Over the past few years, researchers have started to tackle this problem by addressing it from the angle of development and visual cortical lesions. In this review, we will draw together literature from the realms of studies in nonhuman primates and humans that have informed much of the current understanding. This literature has been responsible for changing many long-held opinions on the development of the visual cortex and how the pulvinar interacts dynamically with cortices during early life to ensure rapid development and functional capacity Furthermore, there is evidence to suggest involvement of the pulvinar following lesions of the primary visual cortex (V1) and geniculostriate pathway in early life which have far better functional outcomes than identical lesions obtained in adulthood. Shedding new light on the pulvinar and its role following lesions of the visual brain has implications for our understanding of visual brain disorders and the potential for recovery.

Keywords: blindsight; development; hemianopia; infants; pulvinar; thalamus; visual system

References

  1. Neurosci Res. 2015 Apr;93:20-46 - PubMed
  2. Proc Biol Sci. 1996 May 22;263(1370):633-40 - PubMed
  3. Brain. 2006 Jul;129(Pt 7):1822-32 - PubMed
  4. Cereb Cortex. 1996 Mar-Apr;6(2):184-95 - PubMed
  5. Neural Plast. 2002;9(1):1-25 - PubMed
  6. Nature. 1973 Jun 1;243(5405):295-6 - PubMed
  7. Curr Biol. 2016 Jan 25;26(2):R70-3 - PubMed
  8. Nat Neurosci. 2004 Oct;7(10):1123-8 - PubMed
  9. Science. 1998 Nov 20;282(5393):1504-8 - PubMed
  10. Nature. 2010 Jul 15;466(7304):373-7 - PubMed
  11. J Neurosci. 2012 Nov 28;32(48):17073-85 - PubMed
  12. Exp Brain Res. 1984;57(1):151-7 - PubMed
  13. Vision Res. 2004;44(20):2403-11 - PubMed
  14. Vis Neurosci. 2004 Nov-Dec;21(6):851-9 - PubMed
  15. Vision Res. 2011 Jul 1;51(13):1588-609 - PubMed
  16. Dev Sci. 2011 Nov;14(6):1330-9 - PubMed
  17. J Cogn Neurosci. 2008 Nov;20(11):1927-39 - PubMed
  18. Brain. 1974 Dec;97(4):709-28 - PubMed
  19. Cereb Cortex. 1993 Mar-Apr;3(2):79-94 - PubMed
  20. Neuropsychologia. 1978;16(6):697-708 - PubMed
  21. Neuroreport. 1999 Nov 8;10(16):3295-9 - PubMed
  22. Trends Neurosci. 2005 Oct;28(10):512-7 - PubMed
  23. Trends Cogn Sci. 2016 Feb;20(2):146-57 - PubMed
  24. Neuroscience. 1994 Aug;61(3):691-705 - PubMed
  25. Lancet. 1974 Apr 20;1(7860):707-8 - PubMed
  26. Vision Res. 1992 Apr;32(4):621-30 - PubMed
  27. Neural Plast. 2002;9(1):27-40 - PubMed
  28. Neuroreport. 1999 Sep 9;10(13):2723-9 - PubMed
  29. Neuropsychologia. 1996 Aug;34(8):741-74 - PubMed
  30. Neuroscientist. 2007 Oct;13(5):506-18 - PubMed
  31. Brain Res Dev Brain Res. 1996 Oct 23;96(1-2):261-76 - PubMed
  32. Brain. 1980 Dec;103(4):905-28 - PubMed
  33. Nature. 1992 Dec 3;360(6403):461-3 - PubMed
  34. Front Neuroanat. 2015 Oct 20;9:132 - PubMed
  35. Curr Biol. 2010 Nov 9;20(21):1900-6 - PubMed
  36. Cell. 1999 Sep 17;98(6):739-55 - PubMed
  37. Elife. 2015 Oct 20;4:null - PubMed
  38. Brain. 1997 May;120 ( Pt 5):795-803 - PubMed
  39. Brain. 1997 Mar;120 ( Pt 3):535-59 - PubMed
  40. Neurosci Lett. 2001 Oct 26;312(3):145-8 - PubMed
  41. Vision Res. 2003 May;43(10):1149-57 - PubMed
  42. Science. 1971 Feb 26;171(3973):818-20 - PubMed
  43. Neuron. 2001 Aug 2;31(2):305-15 - PubMed
  44. Cortex. 2013 Jun;49(6):1636-47 - PubMed
  45. Neuropsychologia. 2003;41(8):1068-81 - PubMed
  46. Neuron. 2010 Jan 28;65(2):270-9 - PubMed
  47. Neuropsychologia. 2003;41(13):1769-84 - PubMed
  48. J Neurosci. 2015 Jul 8;35(27):9848-71 - PubMed
  49. Trends Neurosci. 1992 Jan;15(1):20-5 - PubMed
  50. Brain. 2008 Jun;131(Pt 6):1433-44 - PubMed
  51. PLoS Biol. 2015 Sep 29;13(9):e1002260 - PubMed
  52. Neuroimage. 2010 May 1;50(4):1536-44 - PubMed
  53. Optom Vis Sci. 1997 Sep;74(9):761-7 - PubMed
  54. J Cogn Neurosci. 2010 May;22(5):888-902 - PubMed
  55. Ciba Found Symp. 1975;(34):159-90 - PubMed
  56. Curr Biol. 2015 Feb 16;25(4):424-34 - PubMed
  57. J Neurophysiol. 1996 Dec;76(6):3928-33 - PubMed
  58. Brain. 2011 Jan;134(Pt 1):247-57 - PubMed
  59. Front Neuroanat. 2010 Feb 12;4:8 - PubMed
  60. Cereb Cortex. 2006 Mar;16(3):405-14 - PubMed
  61. Braz J Med Biol Res. 2002 Dec;35(12):1485-98 - PubMed

Publication Types

Grant support