Display options
Share it on

Front Microbiol. 2017 Feb 08;8:127. doi: 10.3389/fmicb.2017.00127. eCollection 2017.

Evolutionary Roots and Diversification of the Genus .

Frontiers in microbiology

Ariadna Sanglas, Vicenta Albarral, Maribel Farfán, J G Lorén, M C Fusté

Affiliations

  1. Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona Barcelona, Spain.
  2. Departament de Biologia, Sanitat i Medi Ambient, Secció de Microbiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de BarcelonaBarcelona, Spain; Institut de Recerca de la Biodiversitat, Universitat de BarcelonaBarcelona, Spain.

PMID: 28228750 PMCID: PMC5296313 DOI: 10.3389/fmicb.2017.00127

Abstract

Despite the importance of diversification rates in the study of prokaryote evolution, they have not been quantitatively assessed for the majority of microorganism taxa. The investigation of evolutionary patterns in prokaryotes constitutes a challenge due to a very scarce fossil record, limited morphological differentiation and frequently complex taxonomic relationships, which make even species recognition difficult. Although the speciation models and speciation rates in eukaryotes have traditionally been established by analyzing the fossil record data, this is frequently incomplete, and not always available. More recently, several methods based on molecular sequence data have been developed to estimate speciation and extinction rates from phylogenies reconstructed from contemporary taxa. In this work, we determined the divergence time and temporal diversification of the genus

Keywords: Aeromonas; chronogram; divergence time; diversification model; mdh; recA

References

  1. Evolution. 2004 May;58(5):946-55 - PubMed
  2. Mol Biol Evol. 2007 Dec;24(12):2669-80 - PubMed
  3. J Infect. 2011 Feb;62(2):109-18 - PubMed
  4. Biol Lett. 2009 Jun 23;5(3):425-8 - PubMed
  5. BMC Microbiol. 2012 Apr 30;12:62 - PubMed
  6. Syst Appl Microbiol. 2010 Dec;33(8):427-35 - PubMed
  7. Int J Syst Evol Microbiol. 2009 Aug;59(Pt 8):1976-83 - PubMed
  8. Syst Appl Microbiol. 2011 May;34(3):189-99 - PubMed
  9. MBio. 2014 Nov 18;5(6):e02136 - PubMed
  10. Mol Biol Evol. 2010 Mar;27(3):570-80 - PubMed
  11. PLoS One. 2014 Feb 20;9(2):e88805 - PubMed
  12. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  13. J Appl Microbiol. 2002;93(3):420-30 - PubMed
  14. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305-11 - PubMed
  15. PLoS Biol. 2006 May;4(5):e88 - PubMed
  16. Mol Biol Evol. 2012 Aug;29(8):1969-73 - PubMed
  17. PLoS Biol. 2010 Sep 28;8(9):null - PubMed
  18. Evolution. 2006 Jun;60(6):1152-64 - PubMed
  19. Proc Biol Sci. 2000 Nov 22;267(1459):2267-72 - PubMed
  20. Syst Appl Microbiol. 2016 Mar;39(2):106-14 - PubMed
  21. Syst Biol. 2011 Oct;60(5):676-84 - PubMed
  22. Evolution. 2001 Sep;55(9):1762-80 - PubMed
  23. Mol Phylogenet Evol. 2005 Jan;34(1):29-54 - PubMed
  24. Mol Biol Evol. 2015 Apr;32(4):835-45 - PubMed
  25. Clin Microbiol Rev. 2010 Jan;23(1):35-73 - PubMed
  26. BMC Evol Biol. 2004 Nov 09;4:44 - PubMed
  27. Evolution. 2012 Aug;66(8):2577-86 - PubMed
  28. Evolution. 2008 Aug;62(8):1866-75 - PubMed
  29. J Mol Evol. 1987;26(1-2):74-86 - PubMed
  30. Nature. 1968 Feb 17;217(5129):624-6 - PubMed
  31. Science. 2007 Aug 24;317(5841):1093-6 - PubMed
  32. PLoS One. 2014 Feb 26;9(2):e89543 - PubMed
  33. Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 - PubMed
  34. Mol Biol Evol. 2013 Jul;30(7):1720-8 - PubMed
  35. J Theor Biol. 2015 Dec 21;387:39-45 - PubMed
  36. J Mol Evol. 1981;17(6):368-76 - PubMed
  37. Bioinformatics. 2004 Jan 22;20(2):289-90 - PubMed
  38. BMC Evol Biol. 2007 Nov 08;7:214 - PubMed
  39. Am Nat. 2007 Apr;169(4):E97-106 - PubMed
  40. Nat Methods. 2012 Jul 30;9(8):772 - PubMed
  41. Trends Ecol Evol. 1996;11(1):15-20 - PubMed
  42. PLoS One. 2010 Jul 23;5(7):e11781 - PubMed

Publication Types