Display options
Share it on

J Biol Eng. 2017 Mar 01;11:10. doi: 10.1186/s13036-017-0052-9. eCollection 2017.

Technical advances in global DNA methylation analysis in human cancers.

Journal of biological engineering

Basudev Chowdhury, Il-Hoon Cho, Joseph Irudayaraj

Affiliations

  1. Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, 47907 IN USA.
  2. Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, 461-713 Republic of Korea.
  3. Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907 USA.

PMID: 28261325 PMCID: PMC5331624 DOI: 10.1186/s13036-017-0052-9

Abstract

Prototypical abnormalities of genome-wide DNA methylation constitute the most widely investigated epigenetic mechanism in human cancers. Errors in the cellular machinery to faithfully replicate the global 5-methylcytosine (5mC) patterns, commonly observed during tumorigenesis, give rise to misregulated biological pathways beneficial to the rapidly propagating tumor mass but deleterious to the healthy tissues of the affected individual. A growing body of evidence suggests that the global DNA methylation levels could serve as utilitarian biomarkers in certain cancer types. Important breakthroughs in the recent years have uncovered further oxidized derivatives of 5mC - 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), thereby expanding our understanding of the DNA methylation dynamics. While the biological roles of these epigenetic derivatives are being extensively characterized, this review presents a perspective on the opportunity of innovation in the global methylation analysis platforms. While multiple methods for global analysis of 5mC in clinical samples exist and have been reviewed elsewhere, two of the established methods - Liquid Chromatography coupled with mass spectrometry (LC-MS/MS) and Immunoquantification have successfully evolved to include the quantitation of 5hmC, 5fC and 5caC. Although the analytical performance of LC-MS/MS is superior, the simplicity afforded by the experimental procedure of immunoquantitation ensures it's near ubiquity in clinical applications. Recent developments in spectroscopy, nanotechnology and sequencing also provide immense promise for future evaluations and are discussed briefly. Finally, we provide a perspective on the current scenario of global DNA methylation analysis tools and present suggestions to develop the next generation toolset.

Keywords: 5-carboxylcytosine (5caC); 5-formylcytosine (5fC); 5-hydroxymethylcytosine (5hmC); 5-methylcytosine (5mC); Immunoquantitation; LC-MS/MS; Next generation toolset

References

  1. J Natl Cancer Inst. 2000 Apr 5;92(7):564-9 - PubMed
  2. Biotech Histochem. 2000 Nov;75(6):251-8 - PubMed
  3. J Chromatogr B Biomed Sci Appl. 2001 May 5;755(1-2):185-94 - PubMed
  4. Methods. 2002 Jun;27(2):156-61 - PubMed
  5. Oncogene. 2002 Aug 12;21(35):5400-13 - PubMed
  6. Curr Biol. 2002 Aug 20;12(16):1360-7 - PubMed
  7. Nat Rev Genet. 2002 Nov;3(11):889-95 - PubMed
  8. Symp Soc Exp Biol. 1958;12:138-63 - PubMed
  9. Nucleic Acids Res. 2004 Feb 18;32(3):e38 - PubMed
  10. Anal Chem. 2005 Jan 15;77(2):504-10 - PubMed
  11. Dev Biol. 2005 Feb 15;278(2):274-88 - PubMed
  12. Nat Rev Genet. 2005 Aug;6(8):597-610 - PubMed
  13. Nat Clin Pract Oncol. 2005 Dec;2 Suppl 1:S4-11 - PubMed
  14. Exp Cell Res. 2006 Jul 1;312(11):1989-95 - PubMed
  15. Cancer Res. 2006 Sep 1;66(17):8462-9468 - PubMed
  16. Nat Cell Biol. 2007 Jan;9(1):2-6 - PubMed
  17. Cell. 2007 Feb 23;128(4):635-8 - PubMed
  18. Clin Chem Lab Med. 2007;45(7):903-11 - PubMed
  19. J Biol Chem. 1948 Aug;175(1):315-32 - PubMed
  20. Science. 2009 May 15;324(5929):930-5 - PubMed
  21. Science. 2009 May 15;324(5929):929-30 - PubMed
  22. PLoS One. 2010 Jan 26;5(1):e8888 - PubMed
  23. Nat Rev Genet. 2010 Mar;11(3):204-20 - PubMed
  24. Anal Chem. 2010 Mar 15;82(6):2480-7 - PubMed
  25. Epigenetics. 2010 Apr;5(3):206-13 - PubMed
  26. Epigenomics. 2009 Dec;1(2):239-59 - PubMed
  27. Nat Protoc. 2010 Jul;5(7):1255-64 - PubMed
  28. Adv Genet. 2010;70:27-56 - PubMed
  29. Nature. 2010 Dec 9;468(7325):839-43 - PubMed
  30. Anal Chem. 2010 Dec 1;82(23):9901-8 - PubMed
  31. Anal Biochem. 2011 May 15;412(2):203-9 - PubMed
  32. Nature. 2011 May 19;473(7347):394-7 - PubMed
  33. Urol Oncol. 2013 Jul;31(5):628-34 - PubMed
  34. J Nucleic Acids. 2011;2011:870726 - PubMed
  35. Science. 2011 Sep 2;333(6047):1300-3 - PubMed
  36. Oncotarget. 2011 Aug;2(8):627-37 - PubMed
  37. Nat Rev Cancer. 2011 Sep 23;11(10):726-34 - PubMed
  38. Cancer Res. 2011 Dec 15;71(24):7360-5 - PubMed
  39. Anal Biochem. 2012 Mar 15;422(2):74-8 - PubMed
  40. Int J Cancer. 2012 Oct 1;131(7):1577-90 - PubMed
  41. Anal Chem. 2012 Feb 21;84(4):1799-803 - PubMed
  42. Oncogene. 2013 Jan 31;32(5):663-9 - PubMed
  43. J Cell Sci. 2012 Jun 15;125(Pt 12):2954-64 - PubMed
  44. Analyst. 2012 May 7;137(9):2032-5 - PubMed
  45. PLoS One. 2012;7(7):e41036 - PubMed
  46. Anal Chem. 2012 Oct 16;84(20):8602-6 - PubMed
  47. BMC Biol. 2013 Jan 22;11:4 - PubMed
  48. Clin Chem. 2013 May;59(5):824-32 - PubMed
  49. Biosens Bioelectron. 2013 Jul 15;45:34-9 - PubMed
  50. Head Neck. 2014 Mar;36(3):419-24 - PubMed
  51. Br J Cancer. 2013 Jul 23;109(2):408-15 - PubMed
  52. Epigenetics. 2013 Oct;8(10):1089-100 - PubMed
  53. PLoS One. 2013 Nov 18;8(11):e79044 - PubMed
  54. Anal Chem. 2014 Jan 7;86(1):346-50 - PubMed
  55. Cold Spring Harb Perspect Biol. 2014 Jan 01;6(1):null - PubMed
  56. Br J Cancer. 2014 May 27;110(11):2765-71 - PubMed
  57. Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a019133 - PubMed
  58. Lab Chip. 2014 Jul 7;14(13):2354-62 - PubMed
  59. Blood. 2014 Aug 14;124(7):1110-8 - PubMed
  60. PLoS One. 2014 Sep 03;9(9):e106290 - PubMed
  61. Biosens Bioelectron. 2015 May 15;67:443-9 - PubMed
  62. Ann Surg Oncol. 2015 Apr;22(4):1280-7 - PubMed
  63. Anal Chim Acta. 2014 Dec 10;852:212-7 - PubMed
  64. Genome Med. 2014 Aug 30;6(8):66 - PubMed
  65. Anal Chem. 2015 Feb 3;87(3):1846-52 - PubMed
  66. Anal Chem. 2015 Mar 17;87(6):3445-52 - PubMed
  67. Nucleic Acids Res. 2015 Mar 31;43(6):3046-55 - PubMed
  68. Biosens Bioelectron. 2015 Aug 15;70:366-71 - PubMed
  69. Sci Rep. 2015 Apr 22;5:9281 - PubMed
  70. Tumour Biol. 2015 Nov;36(11):8439-46 - PubMed
  71. Biosens Bioelectron. 2015 Nov 15;73:228-233 - PubMed
  72. J Phys Chem Lett. 2014 Aug 7;5(15):2601-7 - PubMed
  73. Clin Epigenetics. 2015 Aug 21;7:88 - PubMed
  74. Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13650-4 - PubMed
  75. Anal Chem. 2015 Nov 17;87(22):11581-6 - PubMed
  76. ACS Nano. 2015 Dec 22;9(12):11924-32 - PubMed
  77. J Oral Pathol Med. 2016 Jul;45(6):409-17 - PubMed
  78. J Chromatogr A. 2015 Dec 24;1426:64-8 - PubMed
  79. Clin Cancer Res. 2016 Apr 15;22(8):2074-82 - PubMed
  80. Cell Res. 2016 Jan;26(1):103-18 - PubMed
  81. PLoS One. 2016 Jan 19;11(1):e0146302 - PubMed
  82. PLoS One. 2016 Jan 28;11(1):e0147514 - PubMed
  83. Oncotarget. 2016 Apr 5;7(14):18787-97 - PubMed
  84. Anal Chem. 2016 Apr 5;88(7):3476-80 - PubMed
  85. Clin Epigenetics. 2016 Mar 12;8:31 - PubMed
  86. Chem Commun (Camb). 2016 Apr 7;52(27):4930-3 - PubMed
  87. Saudi J Gastroenterol. 2016 Mar-Apr;22(2):139-47 - PubMed
  88. PLoS One. 2016 Apr 06;11(4):e0153100 - PubMed
  89. Biosens Bioelectron. 2017 Jun 15;92:755-762 - PubMed
  90. J Chromatogr. 1988 Oct 28;452:51-60 - PubMed
  91. Chem Sci. 2015 Oct 1;6(10):5628-5634 - PubMed
  92. Nature. 1983 Jan 6;301(5895):89-92 - PubMed
  93. Nucleic Acids Res. 1983 Oct 11;11(19):6883-94 - PubMed

Publication Types