Display options
Share it on

Front Microbiol. 2017 Feb 27;8:186. doi: 10.3389/fmicb.2017.00186. eCollection 2017.

Methane-Oxidizing Bacteria Shunt Carbon to Microbial Mats at a Marine Hydrocarbon Seep.

Frontiers in microbiology

Blair G Paul, Haibing Ding, Sarah C Bagby, Matthias Y Kellermann, Molly C Redmond, Gary L Andersen, David L Valentine

Affiliations

  1. Department of Earth Science, University of California, Santa Barbara, Santa BarbaraCA, USA; Marine Science Institute, University of California, Santa Barbara, Santa BarbaraCA, USA.
  2. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China Qingdao, China.
  3. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, USA.

PMID: 28289403 PMCID: PMC5326789 DOI: 10.3389/fmicb.2017.00186

Abstract

The marine subsurface is a reservoir of the greenhouse gas methane. While microorganisms living in water column and seafloor ecosystems are known to be a major sink limiting net methane transport from the marine subsurface to the atmosphere, few studies have assessed the flow of methane-derived carbon through the benthic mat communities that line the seafloor on the continental shelf where methane is emitted. We analyzed the abundance and isotope composition of fatty acids in microbial mats grown in the shallow Coal Oil Point seep field off Santa Barbara, CA, USA, where seep gas is a mixture of methane and CO

Keywords: 16S rRNA gene; intact polar lipids (IPL); methanotrophs; microbial mats; stable isotope probing; sulfide-oxidizing bacteria

References

  1. Chem Rev. 2007 Feb;107(2):486-513 - PubMed
  2. Nat Protoc. 2007;2(4):860-6 - PubMed
  3. Appl Environ Microbiol. 2006 Sep;72(9):5734-41 - PubMed
  4. ISME J. 2012 Jun;6(6):1260-72 - PubMed
  5. Int J Syst Evol Microbiol. 2015 Jan;65(Pt 1):251-9 - PubMed
  6. Rapid Commun Mass Spectrom. 2004;18(6):617-28 - PubMed
  7. Appl Environ Microbiol. 2005 Jun;71(6):3331-6 - PubMed
  8. Environ Sci Technol. 2008 Oct 1;42(19):7166-73 - PubMed
  9. Appl Environ Microbiol. 2005 Aug;71(8):4345-51 - PubMed
  10. ISME J. 2016 May;10 (5):1240-51 - PubMed
  11. PLoS One. 2015 Mar 11;10(3):e0119284 - PubMed
  12. Appl Environ Microbiol. 2007 May;73(10):3348-62 - PubMed
  13. Environ Microbiol. 2012 Jan;14(1):82-100 - PubMed
  14. Microbiol Rev. 1996 Jun;60(2):439-71 - PubMed
  15. Science. 1970 Nov 27;170(3961):974-7 - PubMed
  16. Appl Environ Microbiol. 2009 Apr;75(7):2192-9 - PubMed
  17. FEMS Microbiol Lett. 2002 Dec 17;217(2):255-61 - PubMed
  18. Environ Sci Technol. 2009 May 15;43(10):3542-8 - PubMed
  19. ISME J. 2011 Nov;5(11):1701-12 - PubMed
  20. Mol Microbiol. 2017 Jan;103(2):242-252 - PubMed
  21. Appl Environ Microbiol. 1989 Nov;55(11):2909-17 - PubMed
  22. Appl Environ Microbiol. 2005 Jan;71(1):467-79 - PubMed
  23. Nature. 2009 Mar 5;458(7234):69-72 - PubMed
  24. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  25. FEMS Microbiol Ecol. 2006 Dec;58(3):449-63 - PubMed
  26. Appl Environ Microbiol. 2005 Apr;71(4):2106-12 - PubMed
  27. Appl Environ Microbiol. 2010 Oct;76(19):6412-22 - PubMed
  28. Appl Environ Microbiol. 2005 Oct;71(10):6375-8 - PubMed
  29. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):299-304 - PubMed
  30. Nature. 2006 Oct 19;443(7113):854-8 - PubMed
  31. Environ Microbiol. 2013 Apr;15(4):1160-75 - PubMed
  32. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20292-7 - PubMed
  33. Environ Microbiol. 2009 Oct;11(10):2720-34 - PubMed
  34. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  35. Science. 2010 Oct 8;330(6001):204-8 - PubMed
  36. Environ Sci Technol. 2016 Oct 6;:null - PubMed
  37. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4015-20 - PubMed
  38. Science. 1986 Sep 19;233(4770):1306-8 - PubMed
  39. Environ Microbiol. 2004 Aug;6(8):799-808 - PubMed
  40. J Microbiol Methods. 2002 Feb;48(2-3):149-60 - PubMed
  41. Bioinformatics. 2007 Nov 1;23(21):2947-8 - PubMed
  42. Science. 2011 Jan 21;331(6015):312-5 - PubMed
  43. Environ Microbiol. 2013 Apr;15(4):1115-31 - PubMed

Publication Types