Display options
Share it on

3 Biotech. 2014 Feb;4(1):41-48. doi: 10.1007/s13205-013-0119-3. Epub 2013 Feb 12.

Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR).

3 Biotech

Khyati V Pathak, Hareshkumar Keharia

Affiliations

  1. BRD School of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Vadtal Road, P.O. Box 39, Vallabh Vidyangar, 388120, Gujarat, India.
  2. BRD School of Biosciences, Sardar Patel Maidan, Satellite Campus, Sardar Patel University, Vadtal Road, P.O. Box 39, Vallabh Vidyangar, 388120, Gujarat, India. [email protected].

PMID: 28324457 PMCID: PMC3909566 DOI: 10.1007/s13205-013-0119-3

Abstract

Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture supernatant of B. subtilis K1 remained stable up to 2 days while emulsion of four stroke engine oil remained stable for more than a year. The critical micelle concentration of crude lipopeptide biosurfactant extracted by acid precipitation from 48-h-old fermentation broth of B. subtilis K1 was found to be 20.5 μg/mL. The biosurfactant activity was found to be stable at 100 °C for 2 h, over a pH range of 6-12 h and over an NaCl concentration up to 10 % (w/v). The application of biosurfactant on laboratory scale sand pack column saturated with four stroke engine oil resulted in ~43 % enhanced oil recovery, suggesting its suitability in microbially enhanced oil recovery.

Keywords: Bacillus subtilis; Critical micelle concentration; Emulsifying activity; Lipopeptide biosurfactants; MEOR

References

  1. Bioresour Technol. 2006 Jan;97(2):336-41 - PubMed
  2. Appl Environ Microbiol. 1995 Sep;61(9):3240-4 - PubMed
  3. J Colloid Interface Sci. 2008 Aug;324(1-2):172-6 - PubMed
  4. J Microbiol Methods. 2008 Oct;75(2):225-30 - PubMed
  5. Biochim Biophys Acta. 1999 May 12;1418(2):307-19 - PubMed
  6. Appl Environ Microbiol. 1987 Feb;53(2):224-9 - PubMed
  7. J Antibiot (Tokyo). 1986 Jul;39(7):888-901 - PubMed
  8. Appl Environ Microbiol. 2002 Dec;68(12):6210-9 - PubMed
  9. Bioresour Technol. 2008 Jul;99(11):4603-8 - PubMed
  10. Microbiol Mol Biol Rev. 1997 Mar;61(1):47-64 - PubMed
  11. World J Microbiol Biotechnol. 1991 Jan;7(1):53-60 - PubMed
  12. Lett Appl Microbiol. 2007 Sep;45(3):330-5 - PubMed
  13. Appl Microbiol Biotechnol. 1999 May;51(5):553-63 - PubMed
  14. Trends Biotechnol. 2004 Mar;22(3):142-6 - PubMed
  15. Curr Opin Microbiol. 2010 Jun;13(3):316-20 - PubMed
  16. Toxicology. 1994 Feb 28;87(1-3):151-74 - PubMed
  17. J Antibiot (Tokyo). 1983 Nov;36(11):1451-7 - PubMed
  18. World J Microbiol Biotechnol. 1991 Jan;7(1):80-8 - PubMed
  19. FEMS Microbiol Lett. 1995 May 1;128(2):101-6 - PubMed
  20. J Am Soc Mass Spectrom. 2012 Oct;23(10):1716-28 - PubMed

Publication Types