Display options
Share it on

Front Physiol. 2017 Feb 09;8:38. doi: 10.3389/fphys.2017.00038. eCollection 2017.

On Biophysical Properties and Sensitivity to Gap Junction Blockers of Connexin 39 Hemichannels Expressed in HeLa Cells.

Frontiers in physiology

Anibal A Vargas, Bruno A Cisterna, Fujiko Saavedra-Leiva, Carolina Urrutia, Luis A Cea, Alex H Vielma, Sebastian E Gutierrez-Maldonado, Alberto J M Martin, Claudia Pareja-Barrueto, Yerko Escalona, Oliver Schmachtenberg, Carlos F Lagos, Tomas Perez-Acle, Juan C Sáez

Affiliations

  1. Departamento de Fisiología, Pontificia Universidad Católica de Chile Santiago, Chile.
  2. Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaíso, Chile.
  3. Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile Santiago, Chile.
  4. Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile.
  5. Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaíso, Chile; Computational Biology Lab (DLab), Fundación Ciencia & VidaSantiago, Chile.
  6. Computational Biology Lab (DLab), Fundación Ciencia & Vida Santiago, Chile.
  7. Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Facultad de Ciencia, Universidad San SebastiánSantiago, Chile.

PMID: 28232803 PMCID: PMC5298994 DOI: 10.3389/fphys.2017.00038

Abstract

Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca

Keywords: Cx39; dye-uptake; electrical coupling; gap junction; membrane potential; permeability; unitary conductance

References

  1. Biochim Biophys Acta. 2013 Jan;1828(1):51-68 - PubMed
  2. Cell Mol Life Sci. 2016 Jul;73(13):2583-99 - PubMed
  3. Biophys J. 2002 Apr;82(4):2016-31 - PubMed
  4. Pflugers Arch. 2000 Jul;440(3):366-79 - PubMed
  5. FEBS Lett. 2004 Aug 13;572(1-3):65-8 - PubMed
  6. Yonsei Med J. 2015 Jan;56(1):1-15 - PubMed
  7. Trends Neurosci. 2003 Nov;26(11):610-7 - PubMed
  8. Bioinformatics. 2015 May 1;31(9):1478-80 - PubMed
  9. J Neurosci. 2015 Jun 24;35(25):9526-38 - PubMed
  10. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836-41 - PubMed
  11. Front Cell Neurosci. 2014 Sep 04;8:265 - PubMed
  12. Biochem Biophys Res Commun. 2011 Jun 17;409(4):603-9 - PubMed
  13. J Mol Cell Cardiol. 2000 Oct;32(10):1859-72 - PubMed
  14. Mol Biol Cell. 1999 Jun;10(6):2033-50 - PubMed
  15. Biochimie. 2015 Aug;115:155-61 - PubMed
  16. J Cheminform. 2012 Aug 13;4(1):17 - PubMed
  17. FEBS Lett. 2014 Apr 17;588(8):1446-57 - PubMed
  18. Biophys J. 2016 Jun 21;110(12):2678-88 - PubMed
  19. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4919-24 - PubMed
  20. Biochim Biophys Acta. 2013 Jan;1828(1):4-14 - PubMed
  21. J Comput Chem. 2011 May;32(7):1466-74 - PubMed
  22. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16030-5 - PubMed
  23. Nat Commun. 2016 Jan 12;7:8770 - PubMed
  24. J Physiol. 1983 Dec;345:123-34 - PubMed
  25. Pflugers Arch. 1998 Jun;436(1):141-51 - PubMed
  26. Cell Commun Signal. 2013 Feb 27;11(1):15 - PubMed
  27. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11388-93 - PubMed
  28. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16229-34 - PubMed
  29. Biochim Biophys Acta. 2016 May;1861(5):439-48 - PubMed
  30. Am J Physiol Cell Physiol. 2009 Sep;297(3):C665-78 - PubMed
  31. Biophys J. 2014 Aug 5;107(3):599-612 - PubMed
  32. EMBO J. 2006 Nov 1;25(21):5071-82 - PubMed
  33. Biochem Biophys Res Commun. 2014 Feb 28;445(1):10-5 - PubMed
  34. J Cell Sci. 2004 Oct 15;117(Pt 22):5381-92 - PubMed
  35. Curr Med Chem. 2010;17(34):4191-230 - PubMed
  36. Biol Cell. 2013 Sep;105(9):373-98 - PubMed
  37. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4475-80 - PubMed
  38. Front Physiol. 2014 Jun 17;5:193 - PubMed
  39. Channels (Austin). 2014;8(1):1-4 - PubMed
  40. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):495-500 - PubMed
  41. Cell Commun Adhes. 2008 May;15(1):207-18 - PubMed
  42. Physiol Rev. 2003 Oct;83(4):1359-400 - PubMed
  43. Biochem Soc Trans. 2015 Jun;43(3):502-7 - PubMed
  44. J Pharmacol Exp Ther. 2009 Feb;328(2):409-18 - PubMed
  45. Cell Calcium. 2009 Sep;46(3):176-87 - PubMed
  46. Dev Biol. 1996 Apr 10;175(1):50-6 - PubMed
  47. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  48. Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit 5.6 - PubMed
  49. Proc Natl Acad Sci U S A. 2012 Feb 28;109 (9):3359-64 - PubMed
  50. J Gen Physiol. 2011 Nov;138(5):475-93 - PubMed
  51. Neuropharmacology. 2013 Dec;75:471-8 - PubMed
  52. Arch Geschwulstforsch. 1981;51(1):96-102 - PubMed
  53. J Neurosci. 2002 Aug 1;22(15):6458-70 - PubMed
  54. Exp Cell Res. 2011 May 1;317(8):1169-78 - PubMed
  55. EMBO J. 2006 Jan 11;25(1):34-44 - PubMed
  56. Biochim Biophys Acta. 2005 Jun 10;1711(2):215-24 - PubMed
  57. Q Rev Biophys. 2001 Aug;34(3):325-472 - PubMed
  58. J Gen Physiol. 2002 Feb;119(2):147-64 - PubMed
  59. Biochem Biophys Res Commun. 1986 Jan 14;134(1):29-36 - PubMed
  60. Pflugers Arch. 1999 Feb;437(3):345-53 - PubMed
  61. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7655-9 - PubMed
  62. Proteins. 2015 Jan;83(1):1-24 - PubMed
  63. Curr Pharm Des. 2005;11(15):1941-58 - PubMed
  64. J Biol Chem. 2002 Mar 22;277(12):10482-8 - PubMed
  65. Neuropharmacology. 2013 Dec;75:517-24 - PubMed
  66. Bioessays. 2009 Sep;31(9):953-74 - PubMed
  67. J Membr Biol. 2002 Jan 15;185(2):93-102 - PubMed
  68. J Physiol. 1992 Jan;445:201-30 - PubMed
  69. J Membr Biol. 1993 Nov;136(2):135-45 - PubMed
  70. J Neurochem. 2005 Mar;92(5):1033-43 - PubMed
  71. J Mol Cell Cardiol. 2001 Dec;33(12):2145-55 - PubMed
  72. Nature. 2009 Apr 2;458(7238):597-602 - PubMed
  73. Biophys J. 2004 Aug;87(2):912-28 - PubMed
  74. Cardiovasc Res. 2009 Sep 1;83(4):747-56 - PubMed
  75. Biophys J. 1999 Jan;76(1 Pt 1):198-206 - PubMed
  76. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8322-7 - PubMed
  77. Am J Physiol Cell Physiol. 2010 Dec;299(6):C1504-15 - PubMed

Publication Types