Display options
Share it on

Biotechnol Rep (Amst). 2016 Dec 23;13:58-71. doi: 10.1016/j.btre.2016.12.006. eCollection 2017 Mar.

Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.

Biotechnology reports (Amsterdam, Netherlands)

Pratima Gupta, Batul Diwan

Affiliations

  1. Department of Biotechnology, National Institute of Technology Raipur, India.

PMID: 28352564 PMCID: PMC5361134 DOI: 10.1016/j.btre.2016.12.006

Abstract

Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

Keywords: Bioremediation; Biosorption; Exopolysaccharide (EPS); Heavy metals

References

  1. FEMS Microbiol Rev. 1999 Apr;23(2):153-77 - PubMed
  2. Biometals. 1999 Jun;12(2):141-9 - PubMed
  3. Water Sci Technol. 2001;43(6):59-66 - PubMed
  4. Bioresour Technol. 2003 Oct;90(1):71-4 - PubMed
  5. Water Res. 2003 Oct;37(17):4231-5 - PubMed
  6. Water Res. 2003 Nov;37(18):4311-30 - PubMed
  7. Environ Int. 2004 Apr;30(2):261-78 - PubMed
  8. Indian J Exp Biol. 2003 Sep;41(9):935-44 - PubMed
  9. Microbiology. 2004 Nov;150(Pt 11):3681-90 - PubMed
  10. Mar Pollut Bull. 2004 Dec;49(11-12):974-7 - PubMed
  11. Mikrobiologiia. 2004 Nov-Dec;73(6):810-6 - PubMed
  12. Carbohydr Res. 2005 Mar 21;340(4):685-92 - PubMed
  13. Mar Pollut Bull. 2005 Mar;50(3):340-3 - PubMed
  14. Appl Microbiol Biotechnol. 2005 Aug;68(2):163-73 - PubMed
  15. Bioresour Technol. 2005 Oct;96(15):1677-82 - PubMed
  16. Bioresour Technol. 2006 Jan;97(1):32-8 - PubMed
  17. J Biosci Bioeng. 2003;95(2):128-32 - PubMed
  18. Environ Int. 2006 Feb;32(2):191-8 - PubMed
  19. Appl Environ Microbiol. 1982 Nov;44(5):1231-7 - PubMed
  20. Appl Environ Microbiol. 1993 Oct;59(10):3280-6 - PubMed
  21. Biotechnol Adv. 2006 Sep-Oct;24(5):427-51 - PubMed
  22. Biodegradation. 2007 Apr;18(2):181-7 - PubMed
  23. Curr Microbiol. 2006 Sep;53(3):189-93 - PubMed
  24. Int J Syst Evol Microbiol. 2006 Aug;56(Pt 8):1765-9 - PubMed
  25. Water Res. 2006 Dec;40(20):3759-66 - PubMed
  26. PLoS Genet. 2007 Apr 13;3(4):e53 - PubMed
  27. J Hazard Mater. 2008 Feb 28;151(1):185-93 - PubMed
  28. J Hazard Mater. 2008 Apr 15;152(3):1285-92 - PubMed
  29. Colloids Surf B Biointerfaces. 2008 May 1;63(1):48-54 - PubMed
  30. J Ind Microbiol Biotechnol. 2008 Apr;35(4):263-74 - PubMed
  31. Biotechnol J. 2008 Feb;3(2):245-51 - PubMed
  32. J Hazard Mater. 2008 Sep 15;157(2-3):315-8 - PubMed
  33. Biotechnol Adv. 2008 May-Jun;26(3):266-91 - PubMed
  34. Biotechnol Bioeng. 1984 Mar;26(3):265-8 - PubMed
  35. Bioresour Technol. 2009 Jan;100(2):859-65 - PubMed
  36. Int J Biol Sci. 2008;4(6):379-86 - PubMed
  37. Biotechnol Adv. 2009 Mar-Apr;27(2):195-226 - PubMed
  38. J Environ Manage. 2009 Jun;90(8):2367-76 - PubMed
  39. Bioresour Technol. 2009 Jul;100(13):3167-74 - PubMed
  40. Microbiology. 2010 Aug;156(Pt 8):2336-42 - PubMed
  41. Biotechnol Adv. 2010 Nov-Dec;28(6):882-94 - PubMed
  42. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):271-9 - PubMed
  43. Trends Biotechnol. 2011 Aug;29(8):388-98 - PubMed
  44. PLoS One. 2011;6(8):e23181 - PubMed
  45. Appl Microbiol Biotechnol. 2011 Nov;92(4):697-708 - PubMed
  46. J Food Sci. 2012 Jun;77(6):T111-7 - PubMed
  47. Biometals. 2012 Dec;25(6):1185-94 - PubMed
  48. Indian J Microbiol. 2008 Mar;48(1):49-64 - PubMed
  49. Interdiscip Toxicol. 2012 Jun;5(2):47-58 - PubMed
  50. Braz J Microbiol. 2008 Oct;39(4):780-6 - PubMed
  51. Interdiscip Toxicol. 2014 Jun;7(2):60-72 - PubMed
  52. Bioresour Technol. 2015 Nov;196:533-9 - PubMed
  53. Water Sci Technol. 2015;72(9):1488-94 - PubMed
  54. Appl Microbiol Biotechnol. 2016 Sep;100(17):7765-75 - PubMed
  55. Materials (Basel). 2016 May 26;9(6):null - PubMed
  56. Can J Microbiol. 1988 Apr;34(4):415-20 - PubMed
  57. J Biol Chem. 1983 Apr 10;258(7):4419-23 - PubMed

Publication Types