Display options
Share it on

Mol Ther Nucleic Acids. 2017 Mar 17;6:15-28. doi: 10.1016/j.omtn.2016.11.009. Epub 2016 Dec 10.

Systemic Antisense Therapeutics for Dystrophin and Myostatin Exon Splice Modulation Improve Muscle Pathology of Adult mdx Mice.

Molecular therapy. Nucleic acids

Ngoc Lu-Nguyen, Alberto Malerba, Linda Popplewell, Fred Schnell, Gunnar Hanson, George Dickson

Affiliations

  1. School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
  2. Sarepta Therapeutics Inc., 215 First Street, Cambridge, MA 02142, USA.
  3. School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK. Electronic address: [email protected].

PMID: 28325281 PMCID: PMC5363451 DOI: 10.1016/j.omtn.2016.11.009

Abstract

Antisense-mediated exon skipping is a promising approach for the treatment of Duchenne muscular dystrophy (DMD), a rare life-threatening genetic disease due to dystrophin deficiency. Such an approach can restore the disrupted reading frame of dystrophin pre-mRNA, generating a truncated form of the protein. Alternatively, antisense therapy can be used to induce destructive exon skipping of myostatin pre-mRNA, knocking down myostatin expression to enhance muscle strength and reduce fibrosis. We have reported previously that intramuscular or intraperitoneal antisense administration inducing dual exon skipping of dystrophin and myostatin pre-mRNAs was beneficial in mdx mice, a mouse model of DMD, although therapeutic effects were muscle type restricted, possibly due to the delivery routes used. Here, following systemic intravascular antisense treatment, muscle strength and body activity of treated adult mdx mice increased to the levels of healthy controls. Importantly, hallmarks of muscular dystrophy were greatly improved in mice receiving the combined exon-skipping therapy, as compared to those receiving dystrophin antisense therapy alone. Our results support the translation of antisense therapy for dystrophin restoration and myostatin inhibition into the clinical setting for DMD.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: Duchenne muscular dystrophy; antisense oligonucleotides; dystrophin; exon skipping; myostatin

References

  1. Muscle Nerve. 2009 Mar;39(3):283-96 - PubMed
  2. Annu Rev Cell Dev Biol. 2004;20:61-86 - PubMed
  3. Mol Ther. 2008 Nov;16(11):1825-32 - PubMed
  4. Mol Ther. 2015 Apr;23(4):627-37 - PubMed
  5. Ann Neurol. 2016 Feb;79(2):257-71 - PubMed
  6. Biochim Biophys Acta. 1999 Dec 10;1489(1):3-18 - PubMed
  7. Nat Genet. 1993 Apr;3(4):283-91 - PubMed
  8. Skelet Muscle. 2014 May 23;4:10 - PubMed
  9. Hum Gene Ther. 2014 Feb;25(2):98-108 - PubMed
  10. BMC Med Genomics. 2011 Apr 20;4:36 - PubMed
  11. Mol Ther. 2015 Aug;23(8):1341-1348 - PubMed
  12. Nature. 1997 May 1;387(6628):83-90 - PubMed
  13. FEBS Lett. 2010 Jun 3;584(11):2403-8 - PubMed
  14. Muscle Nerve. 2016 Apr;53(4):570-8 - PubMed
  15. EMBO Mol Med. 2015 Nov 05;7(12):1513-28 - PubMed
  16. J Biol Chem. 2008 Jul 11;283(28):19371-8 - PubMed
  17. Mol Ther. 2011 Jan;19(1):159-64 - PubMed
  18. Skelet Muscle. 2014 May 15;4:9 - PubMed
  19. Mol Ther. 2010 May;18(5):881-7 - PubMed
  20. Nat Commun. 2015 Feb 18;6:6244 - PubMed
  21. Science. 2014 May 9;344(6184):649-52 - PubMed
  22. J Child Neurol. 2015 Sep;30(10):1275-80 - PubMed
  23. J Physiol. 2012 May 1;590(9):2151-65 - PubMed
  24. Stem Cells Transl Med. 2013 Jan;2(1):68-80 - PubMed
  25. FASEB J. 2008 Feb;22(2):477-87 - PubMed
  26. Nature. 2002 Nov 28;420(6914):418-21 - PubMed
  27. Hum Gene Ther. 2013 Jul;24(7):692-701 - PubMed
  28. Skelet Muscle. 2015 Oct 09;5:34 - PubMed
  29. Int J Biochem Cell Biol. 2013 Oct;45(10):2333-47 - PubMed
  30. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9306-11 - PubMed
  31. Am J Pathol. 2011 Mar;178(3):1287-97 - PubMed
  32. Mol Ther Nucleic Acids. 2012 Dec 18;1:e62 - PubMed
  33. PLoS One. 2014 Oct 13;9(10):e110371 - PubMed
  34. Cell. 1987 Dec 24;51(6):919-28 - PubMed
  35. J Cell Sci. 1992 Dec;103 ( Pt 4):1223-33 - PubMed
  36. Lancet. 2015 May 2;385(9979):1748-1757 - PubMed
  37. Nat Med. 2015 Mar;21(3):270-5 - PubMed
  38. Mol Ther. 2011 Jan;19(1):165-71 - PubMed
  39. Ann Rehabil Med. 2013 Dec;37(6):875-8 - PubMed
  40. J Cell Biol. 1991 Jan;112(1):135-48 - PubMed
  41. J Neurol Sci. 1995 Apr;129(2):97-105 - PubMed
  42. Mol Ther. 2014 Nov;22(11):1923-35 - PubMed
  43. Hum Gene Ther. 2008 Mar;19(3):241-54 - PubMed
  44. Mol Ther Nucleic Acids. 2015 Feb 03;4:e225 - PubMed
  45. Skelet Muscle. 2015 May 01;5:16 - PubMed
  46. PLoS One. 2009;4(3):e4937 - PubMed
  47. Mol Ther. 2008 Sep;16(9):1539-45 - PubMed
  48. FASEB J. 2005 Apr;19(6):543-9 - PubMed
  49. Am J Physiol Cell Physiol. 2007 Sep;293(3):C985-92 - PubMed
  50. Hum Mol Genet. 2013 Jul 1;22(13):2634-41 - PubMed
  51. Lancet Neurol. 2014 Oct;13(10):987-96 - PubMed
  52. Cell Metab. 2015 Jul 7;22(1):164-74 - PubMed
  53. Neuromuscul Disord. 1996 Oct;6(5):367-76 - PubMed
  54. Nature. 1991 Aug 8;352(6335):536-9 - PubMed
  55. Gene Ther. 2014 Sep;21(9):785-93 - PubMed
  56. Am J Cardiol. 2012 Jul 1;110(1):98-102 - PubMed

Publication Types