Display options
Share it on

Nat Commun. 2017 Feb 24;8:14554. doi: 10.1038/ncomms14554.

Identifying electron transfer coordinates in donor-bridge-acceptor systems using mode projection analysis.

Nature communications

Xunmo Yang, Theo Keane, Milan Delor, Anthony J H M Meijer, Julia Weinstein, Eric R Bittner

Affiliations

  1. Department of Chemistry, University of Houston, Houston, Texas 77204, USA.
  2. Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
  3. Department of Physics, University of Houston, Houston, Texas 77204, USA.

PMID: 28233775 PMCID: PMC5333094 DOI: 10.1038/ncomms14554

Abstract

We report upon an analysis of the vibrational modes that couple and drive the state-to-state electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm that finds superpositions of vibronic modes that optimize the electron/nuclear coupling using input from excited-state quantum chemical methods. Our results indicate that the electron transfer reaction coordinates between a triplet charge-transfer state and lower lying charge-separated and localized excitonic states are dominated by asymmetric and symmetric modes of the acetylene groups on either side of the central atom in this system. In particular, we find that while a nearly symmetric mode couples both the charge-separation and charge-recombination transitions more or less equally, the coupling along an asymmetric mode is far greater suggesting that IR excitation of the acetylene modes preferentially enhances charge-recombination transition relative to charge-separation.

References

  1. Dalton Trans. 2014 Dec 21;43(47):17677-93 - PubMed
  2. Acc Chem Res. 2009 Oct 20;42(10):1669-78 - PubMed
  3. Nano Lett. 2009 May;9(5):1818-23 - PubMed
  4. Nat Commun. 2014;5:3119 - PubMed
  5. Nat Chem. 2015 Sep;7(9):689-95 - PubMed
  6. Phys Rev Lett. 2008 Mar 14;100(10):107402 - PubMed
  7. J Chem Phys. 2015 Jun 28;142(24):244114 - PubMed
  8. J Comput Chem. 2012 Feb 15;33(5):580-92 - PubMed
  9. J Chem Phys. 2009 Nov 21;131(19):194905 - PubMed
  10. Science. 2014 Dec 19;346(6216):1492-5 - PubMed
  11. J Chem Phys. 2009 Jun 21;130(23):234102 - PubMed
  12. J Chem Phys. 2007 Jan 14;126(2):021103 - PubMed
  13. J Phys Chem A. 2014 Jul 17;118(28):5196-203 - PubMed
  14. J Chem Phys. 2006 Sep 14;125(10):104906 - PubMed
  15. Phys Chem Chem Phys. 2015 Dec 14;17(46):30854-66 - PubMed

Publication Types