Display options
Share it on

Beilstein J Nanotechnol. 2017 Feb 22;8:485-493. doi: 10.3762/bjnano.8.52. eCollection 2017.

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application.

Beilstein journal of nanotechnology

Giacomo Biagiotti, Vittoria Langè, Cristina Ligi, Stefano Caporali, Maurizio Muniz-Miranda, Anna Flis, K Michał Pietrusiewicz, Giacomo Ghini, Alberto Brandi, Stefano Cicchi

Affiliations

  1. Dipartimento di Chimica Ugo Schiff Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
  2. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia di Materiali INSTM, 50123 Firenze, Italy; Istituto dei Sistemi Complessi Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino, Italy.
  3. Department of Organic Chemistry Maria Curie-Sk?odowska University, ul. Gliniana 33, 20-614 Lublin, Poland.
  4. Nanesa S.r.l. Via Setteponti 143 - 1, 52100 Arezzo, Italy.

PMID: 28326239 PMCID: PMC5331327 DOI: 10.3762/bjnano.8.52

Abstract

A new synthetic approach for the production of carbon nanomaterials (CNM) decorated with organophosphorus moieties is presented. Three different triphenylphosphine oxide (TPPO) derivatives were used to decorate oxidized multiwalled carbon nanotubes (ox-MWCNTs) and graphene platelets (GPs). The TPPOs chosen bear functional groups able to react with the CNMs by Tour reaction (an amino group), nitrene cycloaddition (an azido group) or CuAAC reaction (one terminal C-C triple bond). All the adducts were characterized by FTIR, Raman spectroscopy, TEM, XPS, elemental analysis and ICP-AES. The cycloaddition of nitrene provided the higher loading on ox-MWCNTs and GPs as well, while the Tour approach gave best results with nanotubes (CNTs). Finally, we investigated the possibility to reduce the TPPO functionalized CNMs to the corresponding phosphine derivatives and applied one of the materials produced as heterogeneous organocatalyst in a Staudinger ligation reaction.

Keywords: azides; click chemistry; heterogeneous catalysis; organocatalysis; phosphorus

References

  1. Chem Rev. 2012 Nov 14;112(11):6156-214 - PubMed
  2. J Am Chem Soc. 2008 Aug 27;130(34):11503-9 - PubMed
  3. Org Lett. 2010 Oct 15;12(20):4678-81 - PubMed
  4. Beilstein J Org Chem. 2014 Sep 04;10:2089-121 - PubMed
  5. J Mater Chem B. 2016 Jun 7;4(21):3823-3831 - PubMed
  6. Chempluschem. 2015 Apr;80(4):704-714 - PubMed
  7. Chemistry. 2009;15(9):2101-10 - PubMed
  8. Chem Commun (Camb). 2010 Jun 21;46(23):4097-9 - PubMed
  9. Adv Drug Deliv Rev. 2013 Dec;65(15):1964-2015 - PubMed
  10. Angew Chem Int Ed Engl. 2012 Nov 26;51(48):12036-40 - PubMed
  11. Colloids Surf B Biointerfaces. 2014 Nov 1;123:264-70 - PubMed
  12. Angew Chem Int Ed Engl. 2015 Oct 26;54(44):13041-4 - PubMed
  13. Chemistry. 2015 Oct 19;21(43):15349-53 - PubMed
  14. Science. 2004 Oct 22;306(5696):666-9 - PubMed
  15. Angew Chem Int Ed Engl. 2007;46(7):1018-25 - PubMed
  16. Org Lett. 2004 Dec 9;6(25):4675-8 - PubMed
  17. Chemistry. 2006 Dec 4;12(35):9056-65 - PubMed
  18. Chemistry. 2011 Sep 26;17(40):11092-101 - PubMed
  19. Chem Rev. 2006 Mar;106(3):1105-36 - PubMed
  20. Chemistry. 2012 Apr 16;18(16):4965-73 - PubMed
  21. Nano Lett. 2010 Feb 10;10(2):398-405 - PubMed
  22. Org Lett. 2011 Jul 1;13(13):3478-81 - PubMed
  23. Dalton Trans. 2008 Jun 14;(22):2937-44 - PubMed
  24. Chem Commun (Camb). 2010 May 7;46(17):3025-7 - PubMed

Publication Types