Display options
Share it on

Nat Nanotechnol. 2017 May;12(5):420-424. doi: 10.1038/nnano.2017.18. Epub 2017 Mar 06.

Atomic-scale sensing of the magnetic dipolar field from single atoms.

Nature nanotechnology

Taeyoung Choi, William Paul, Steffen Rolf-Pissarczyk, Andrew J Macdonald, Fabian D Natterer, Kai Yang, Philip Willke, Christopher P Lutz, Andreas J Heinrich

Affiliations

  1. IBM Almaden Research Center, San Jose, California 95120, USA.
  2. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany.
  3. Max Planck Institute for Solid State Research, Stuttgart 70569, Germany.
  4. University of British Columbia &Quantum Matter Institute, Vancouver, BC V6T 1Z4, Canada.
  5. Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  6. School of Physical Sciences and Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
  7. IV. Physical Institute, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
  8. Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea.
  9. Physics Department, Ewha Womans University, Seoul, Republic of Korea.

PMID: 28263962 DOI: 10.1038/nnano.2017.18

Abstract

Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r

References

  1. Science. 2004 Oct 15;306(5695):466-9 - PubMed
  2. Science. 2014 Jun 6;344(6188):1135-8 - PubMed
  3. Science. 2006 May 19;312(5776):1021-4 - PubMed
  4. Science. 2004 Jul 23;305(5683):493-5 - PubMed
  5. Science. 2014 May 30;344(6187):988-92 - PubMed
  6. Nature. 2013 Apr 18;496(7445):334-8 - PubMed
  7. Phys Rev Lett. 2015 Dec 4;115(23):237202 - PubMed
  8. Science. 2013 Feb 1;339(6119):557-60 - PubMed
  9. Nat Nanotechnol. 2012 Feb 19;7(4):242-6 - PubMed
  10. Phys Rev Lett. 2008 Nov 7;101(19):197208 - PubMed
  11. Phys Rev Lett. 2009 Apr 24;102(16):167203 - PubMed
  12. Science. 2013 Feb 1;339(6119):561-3 - PubMed
  13. Rev Sci Instrum. 2016 Jul;87(7):074703 - PubMed
  14. Nature. 2014 Jun 19;510(7505):376-80 - PubMed
  15. Nature. 2006 Aug 17;442(7104):766-71 - PubMed
  16. Nano Lett. 2010 Aug 11;10(8):3168-72 - PubMed
  17. Science. 2015 Oct 23;350(6259):417-20 - PubMed
  18. Nat Commun. 2015 Oct 12;6:8536 - PubMed
  19. Nature. 2004 Jul 15;430(6997):329-32 - PubMed
  20. Science. 2007 Nov 30;318(5855):1430-3 - PubMed

Publication Types