Display options
Share it on

Nano Lett. 2017 Apr 12;17(4):2690-2696. doi: 10.1021/acs.nanolett.7b00540. Epub 2017 Apr 03.

Hard Superconducting Gap in InSb Nanowires.

Nano letters

Önder Gül, Hao Zhang, Folkert K de Vries, Jasper van Veen, Kun Zuo, Vincent Mourik, Sonia Conesa-Boj, Michał P Nowak, David J van Woerkom, Marina Quintero-Pérez, Maja C Cassidy, Attila Geresdi, Sebastian Koelling, Diana Car, Sébastien R Plissard, Erik P A M Bakkers, Leo P Kouwenhoven

Affiliations

  1. QuTech, Delft University of Technology , 2600 GA Delft, The Netherlands.
  2. Kavli Institute of Nanoscience, Delft University of Technology , 2600 GA Delft, The Netherlands.
  3. Faculty of Physics and Applied Computer Science, AGH University of Science and Technology , al. A. Mickiewicza 30, 30-059 Kraków, Poland.
  4. Netherlands Organisation for Applied Scientific Research (TNO) , 2600 AD Delft, The Netherlands.
  5. Department of Applied Physics, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands.
  6. CNRS-Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Université de Toulouse , 7 avenue du colonel Roche, F-31400 Toulouse, France.
  7. Microsoft Station Q Delft , 2600 GA Delft, The Netherlands.

PMID: 28355877 PMCID: PMC5446204 DOI: 10.1021/acs.nanolett.7b00540

Abstract

Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

Keywords: InSb; Majorana; hard gap; hybrid device; semiconductor nanowire; topological superconductivity

References

  1. Phys Rev Lett. 2008 Mar 7;100(9):096407 - PubMed
  2. Phys Rev Lett. 2010 Aug 13;105(7):077001 - PubMed
  3. Phys Rev Lett. 2010 Oct 22;105(17):177002 - PubMed
  4. Science. 2012 Apr 6;336(6077):52-5 - PubMed
  5. Science. 2012 May 25;336(6084):1003-7 - PubMed
  6. Phys Rev Lett. 2012 Aug 3;109(5):056803 - PubMed
  7. Nano Lett. 2012 Dec 12;12(12):6414-9 - PubMed
  8. Nano Lett. 2013 Feb 13;13(2):387-91 - PubMed
  9. Phys Rev Lett. 2013 May 3;110(18):186803 - PubMed
  10. Phys Rev Lett. 2014 Apr 4;112(13):132001 - PubMed
  11. Adv Mater. 2014 Jul 23;26(28):4875-9 - PubMed
  12. Phys Rev Lett. 2013 Mar 22;110(12):126406 - PubMed
  13. Nat Mater. 2015 Apr;14(4):400-6 - PubMed
  14. Nat Nanotechnol. 2015 Mar;10(3):232-6 - PubMed
  15. Phys Rev Lett. 2015 Jan 9;114(1):017001 - PubMed
  16. Nanotechnology. 2015 May 29;26(21):215202 - PubMed
  17. Nat Nanotechnol. 2015 Jul;10(7):593-7 - PubMed
  18. Nat Commun. 2015 Jun 11;6:7426 - PubMed
  19. Nat Commun. 2016 Jan 21;7:10303 - PubMed
  20. Nature. 2016 Mar 10;531(7593):206-9 - PubMed
  21. Sci Rep. 2016 Apr 22;6:24822 - PubMed
  22. Nano Lett. 2016 Jun 8;16(6):3482-6 - PubMed
  23. Nat Nanotechnol. 2017 Feb;12(2):137-143 - PubMed
  24. Nat Commun. 2016 Sep 29;7:12841 - PubMed
  25. Science. 2016 Dec 23;354(6319):1557-1562 - PubMed
  26. Phys Rev Lett. 2017 Mar 10;118(10):107701 - PubMed

Publication Types