Display options
Share it on

Oncol Lett. 2017 Feb;13(2):791-799. doi: 10.3892/ol.2016.5522. Epub 2016 Dec 20.

Induction of apoptosis by FFJ-5, a novel naphthoquinone compound, occurs via downregulation of PKM2 in A549 and HepG2 cells.

Oncology letters

Xiaoli Wei, Ming Li, Mingming Ma, Huina Jia, Yu Zhang, Wenyi Kang, Tianxiao Wang, Xiaoyan Shi

Affiliations

  1. Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China.

PMID: 28356960 PMCID: PMC5351257 DOI: 10.3892/ol.2016.5522

Abstract

Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and as a potential target for cancer therapy. In this study, F§FJ-5, a characterized naphthoquinone modifier of mollugin, was synthesized in order to investigate its anticancer activity and the potential mechanisms. It was observed that FFJ-5 inhibited the cell growth of human lung adenocarcinoma cells A549 and human hepatoma cells HepG2 by MTT assays. FFJ-5 arrested cell cycle at the G2/M phase. Further analyses demonstrated that FFJ-5 attenuated the expression of PKM2 and reduced the production of adenosine triphosphate (ATP). Reduced expression and activity of epidermal growth factor receptor (EGFR) and Akt were observed in A549 and HepG2 cells exposed to FFJ-5. FFJ-5 exposure also resulted in cell apoptosis, in association with decreased intracellular pH level and mitochondrial membrane potential. In addition, FFJ-5 activated the caspase-3 cascade. In conclusion, FFJ-5 inhibited cancer cell growth via the blocking the EGFR-Akt-PKM2 pathway or through the synergistic action of EGFR, Akt and PKM2 proteins, alongside a decrease in ATP production. In addition, FFJ-5 induced cancer cell apoptosis by decreasing the intracellular pH level and the mitochondrial apoptosis pathway. The present results suggest a potential role of FFJ-5 on the therapy of human cancer.

Keywords: apoptosis; cancer; naphthoquinone modifier; pyruvate kinase isoenzyme M2

References

  1. Science. 1956 Feb 24;123(3191):309-14 - PubMed
  2. Science. 1956 Aug 10;124(3215):269-70 - PubMed
  3. Cell Metab. 2016 Nov 8;24(5):672-684 - PubMed
  4. Pharm Biol. 2012 Mar;50(3):376-83 - PubMed
  5. Biomed Res Int. 2015;2015:354143 - PubMed
  6. Mol Med Rep. 2015 Sep;12(3):4358-63 - PubMed
  7. Oncol Rep. 2012 Nov;28(5):1719-26 - PubMed
  8. Nat Rev Cancer. 2011 May;11(5):325-37 - PubMed
  9. Cancer J. 2015 Mar-Apr;21(2):56-61 - PubMed
  10. Asian Pac J Cancer Prev. 2014;15(5):1961-70 - PubMed
  11. Br J Cancer. 2014 Oct 28;111(9):1757-64 - PubMed
  12. Cell Biol Int. 2009 Sep;33(9):1008-19 - PubMed
  13. Tumour Biol. 2010 Oct;31(5):391-9 - PubMed
  14. Int J Mol Sci. 2015 May 15;16(5):11055-86 - PubMed
  15. Oncol Lett. 2012 Dec;4(6):1151-1157 - PubMed
  16. Cell. 2003 Jul 25;114(2):255-66 - PubMed
  17. Biochem Biophys Res Commun. 2014 Jul 18;450(1):247-54 - PubMed
  18. Oncogene. 2015 Jul 23;34(30):3946-56 - PubMed
  19. Oncotarget. 2015 Jul 30;6(21):18406-17 - PubMed
  20. Future Med Chem. 2014 Jun;6(10):1167-78 - PubMed
  21. Dig Dis Sci. 2016 Mar;61(3):767-73 - PubMed
  22. Zhonghua Kou Qiang Yi Xue Za Zhi. 2015 Jul;50(7):392-8 - PubMed
  23. J Gen Physiol. 1927 Mar 7;8(6):519-30 - PubMed
  24. Mol Cell. 2014 Jan 9;53(1):75-87 - PubMed
  25. Mol Cell. 2012 Dec 14;48(5):771-84 - PubMed
  26. Am J Cancer Res. 2016 Oct 01;6(10 ):2221-2234 - PubMed
  27. Cell Signal. 2015 Feb;27(2):228-35 - PubMed
  28. Cancer Lett. 2012 Mar 28;316(2):204-10 - PubMed
  29. FEBS Lett. 2014 Aug 19;588(16):2685-92 - PubMed

Publication Types