Display options
Share it on

Contemp Oncol (Pozn). 2016;20(6):449-452. doi: 10.5114/wo.2016.65603. Epub 2017 Jan 12.

Can high dose rates used in cancer radiotherapy change therapeutic effectiveness?.

Contemporary oncology (Poznan, Poland)

Maria Konopacka, Jacek Rogoliński, Aleksander Sochanik, Krzysztof Ślosarek

Affiliations

  1. Centre for Translational Research and Molecular Biology of Cancer, Maria Sk?odowska-Curie Memorial Cancer Centre and Institute of Oncology Gliwice Branch, Gliwice, Poland.
  2. Department of Radiotherapy and Brachytherapy Planning, Maria Sk?odowska-Curie Memorial Cancer Centre and Institute of Oncology Gliwice Branch, Gliwice, Poland.

PMID: 28239281 PMCID: PMC5320456 DOI: 10.5114/wo.2016.65603

Abstract

Current cancer radiotherapy relies on increasingly high dose rates of ionising radiation (100-2400 cGy/min). It is possible that changing dose rates is not paralleled by treatment effectiveness. Irradiating cancer cells is assumed to induce molecular alterations that ultimately lead to apoptotic death. Studies comparing the efficacy of radiation-induced DNA damage and apoptotic death in relation to varying dose rates do not provide unequivocal data. Whereas some have demonstrated higher dose rates (single dose) to effectively kill cancer cells, others claim the opposite. Recent gene expression studies in cells subject to variable dose rates stress alterations in molecular signalling, especially in the expression of genes linked to cell survival, immune response, and tumour progression. Novel irradiation techniques of modern cancer treatment do not rely anymore on maintaining absolute constancy of dose rates during radiation emission: instead, timing and exposure areas are regulated temporally and spatially by modulating the dose rate and beam shape. Such conditions may be reflected in tumour cells' response to irradiation, and this is supported by the references provided.

Keywords: apoptosis; cancer radiotherapy; dose rate; gene expression profile; genetic damage; ionising radiation

References

  1. Radiat Oncol. 2008 Jun 27;3:18 - PubMed
  2. Radiother Oncol. 2011 Oct;101(1):223-5 - PubMed
  3. PLoS One. 2015 Aug 12;10(8):e0133728 - PubMed
  4. Int J Radiat Oncol Biol Phys. 1991 Nov;21(6):1403-14 - PubMed
  5. Mutat Res Genet Toxicol Environ Mutagen. 2014 Oct;773:14-22 - PubMed
  6. Radiat Res. 1993 Jul;135(1):24-31 - PubMed
  7. Neurol Sci. 2011 Aug;32(4):579-88 - PubMed
  8. Int J Mol Sci. 2013 Jul 01;14(7):13719-26 - PubMed
  9. Genomics. 2011 Jun;97(6):358-63 - PubMed
  10. Acta Oncol. 2013 Apr;52(3):652-7 - PubMed
  11. Mol Cancer Res. 2003 Apr;1(6):445-52 - PubMed
  12. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Dec;52(6):859-69 - PubMed
  13. Postepy Hig Med Dosw (Online). 2008 Sep 11;62:468-77 - PubMed
  14. Radiat Res. 1998 Jan;149(1):98-102 - PubMed
  15. J Nucl Med. 2007 Oct;48(10):1683-91 - PubMed
  16. Mutagenesis. 2011 Jan;26(1):11-7 - PubMed
  17. Mutat Res. 2013 Jul-Sep;753(1):24-40 - PubMed
  18. Int J Radiat Oncol Biol Phys. 2008 Aug 1;71(5):1547-52 - PubMed
  19. Int J Radiat Biol. 2014 Mar;90(3):241-7 - PubMed
  20. Radiother Oncol. 2011 Oct;101(1):226-32 - PubMed
  21. Brachytherapy. 2012 Mar-Apr;11(2):149-56 - PubMed
  22. Radiat Res. 2015 Mar;183(3):315-24 - PubMed
  23. Radiat Res. 2002 Sep;158(3):311-8 - PubMed
  24. J Urol. 1998 Feb;159(2):591-8 - PubMed

Publication Types