Display options
Share it on

Front Neurol. 2017 Feb 10;8:34. doi: 10.3389/fneur.2017.00034. eCollection 2017.

B10 Cell Frequencies and Suppressive Capacity in Myasthenia Gravis Are Associated with Disease Severity.

Frontiers in neurology

John S Yi, Melissa A Russo, Janice M Massey, Vern Juel, Lisa D Hobson-Webb, Karissa Gable, Shruti M Raja, Kristina Balderson, Kent J Weinhold, Jeffrey T Guptill

Affiliations

  1. Division of Surgical Sciences, Department of Surgery, Duke University Medical Center , Durham, NC , USA.
  2. Department of Neurology, Neuromuscular Section, Duke University Medical Center , Durham, NC , USA.

PMID: 28239367 PMCID: PMC5301008 DOI: 10.3389/fneur.2017.00034

Abstract

Myasthenia gravis (MG) is a T cell-dependent, B cell-mediated disease. The mechanisms for loss of self-tolerance in this disease are not well understood, and recently described regulatory B cell (Breg) subsets have not been thoroughly investigated. B10 cells are a subset of Bregs identified by the production of the immunosuppressive cytokine, interleukin-10 (IL-10). B10 cells are known to strongly inhibit B- and T-cell inflammatory responses in animal models and are implicated in human autoimmunity. In this study, we examined quantitative and qualitative aspects of B10 cells in acetylcholine receptor autoantibody positive MG (AChR-MG) patients and healthy controls. We observed reduced B10 cell frequencies in AChR-MG patients, which inversely correlated with disease severity. Disease severity also affected the function of B10 cells, as B10 cells in the moderate/severe group of MG patients were less effective in suppressing CD4 T-cell proliferation. These results suggest that B10 cell frequencies may be a useful biomarker of disease severity, and therapeutics designed to restore B10 cell frequencies could hold promise as a treatment for this disease through restoration of self-tolerance.

Keywords: AChR; B10; Breg; IL-10; myasthenia gravis; regulatory B cells

References

  1. J Autoimmun. 2014 Aug;52:90-100 - PubMed
  2. Immunity. 2010 Jan 29;32(1):129-40 - PubMed
  3. Autoimmun Rev. 2012 Jul;11(9):670-7 - PubMed
  4. Science. 2009 Jun 19;324(5934):1572-6 - PubMed
  5. J Immunol. 2010 Oct 15;185(8):4835-45 - PubMed
  6. J Virol. 2011 Jan;85(2):733-41 - PubMed
  7. Nat Med. 2009 Sep;15(9):1013-5 - PubMed
  8. Immunity. 2008 May;28(5):639-50 - PubMed
  9. J Exp Med. 2003 Feb 17;197(4):489-501 - PubMed
  10. Blood. 2005 Jan 15;105(2):735-41 - PubMed
  11. Nat Med. 2014 Jun;20(6):633-41 - PubMed
  12. Clin Immunol. 2012 Dec;145(3):209-23 - PubMed
  13. Int Immunol. 2015 Oct;27(10 ):471-7 - PubMed
  14. PLoS One. 2016 Mar 18;11(3):e0151761 - PubMed
  15. Cell Mol Immunol. 2015 Jan;12(1):31-9 - PubMed
  16. Ann N Y Acad Sci. 2003 Sep;998:440-4 - PubMed
  17. J Immunol. 2010 May 1;184(9):4801-9 - PubMed
  18. J Clin Invest. 2010 Jun;120(6):1836-47 - PubMed
  19. J Immunol. 2007 May 15;178(10 ):6092-9 - PubMed
  20. Nature. 2012 Nov 8;491(7423):264-8 - PubMed
  21. J Immunol. 2014 Sep 15;193(6):2669-77 - PubMed
  22. J Immunol. 2010 Jan 1;184(1):114-26 - PubMed
  23. J Exp Med. 1997 Nov 17;186(10):1749-56 - PubMed
  24. Neurol Neuroimmunol Neuroinflamm. 2015 Feb 26;2(2):e77 - PubMed
  25. Clin Immunol. 2008 Aug;128(2):172-80 - PubMed
  26. J Neuroimmunol. 2016 Aug 15;297:38-45 - PubMed
  27. Blood. 2008 Dec 1;112(12):4555-64 - PubMed
  28. Kidney Int. 2010 Sep;78(5):503-13 - PubMed
  29. Blood. 2011 Jan 13;117(2):530-41 - PubMed
  30. J Autoimmun. 2014 Aug;52:130-8 - PubMed
  31. Muscle Nerve. 2014 Apr;49(4):487-94 - PubMed
  32. J Clin Invest. 2008 Oct;118(10):3420-30 - PubMed
  33. Arthritis Res Ther. 2012 Feb 08;14(1):R32 - PubMed
  34. Clin Exp Rheumatol. 2013 Mar-Apr;31(2):172-9 - PubMed
  35. Nat Immunol. 2002 Oct;3(10):944-50 - PubMed
  36. Nat Rev Drug Discov. 2014 May;13(5):379-95 - PubMed
  37. Blood. 2013 Apr 18;121(16):3274-83 - PubMed
  38. Hum Immunol. 2015 Sep;76(9):615-21 - PubMed
  39. Neurology. 2000 Jul 12;55(1):16-23 - PubMed

Publication Types

Grant support