Display options
Share it on

Biomed Opt Express. 2017 Jan 27;8(2):1152-1171. doi: 10.1364/BOE.8.001152. eCollection 2017 Feb 01.

Measurement of dynamic cell-induced 3D displacement fields .

Biomedical optics express

Jeffrey A Mulligan, François Bordeleau, Cynthia A Reinhart-King, Steven G Adie

Affiliations

  1. School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
  2. Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

PMID: 28271010 PMCID: PMC5330596 DOI: 10.1364/BOE.8.001152

Abstract

Traction force microscopy (TFM) is a method used to study the forces exerted by cells as they sense and interact with their environment. Cell forces play a role in processes that take place over a wide range of spatiotemporal scales, and so it is desirable that TFM makes use of imaging modalities that can effectively capture the dynamics associated with these processes. To date, confocal microscopy has been the imaging modality of choice to perform TFM in 3D settings, although multiple factors limit its spatiotemporal coverage. We propose traction force optical coherence microscopy (TF-OCM) as a novel technique that may offer enhanced spatial coverage and temporal sampling compared to current methods used for volumetric TFM studies. Reconstructed volumetric OCM data sets were used to compute time-lapse extracellular matrix deformations resulting from cell forces in 3D culture. These matrix deformations revealed clear differences that can be attributed to the dynamic forces exerted by normal versus contractility-inhibited NIH-3T3 fibroblasts embedded within 3D Matrigel matrices. Our results are the first step toward the realization of 3D TF-OCM, and they highlight the potential use of OCM as a platform for advancing cell mechanics research.

Keywords: (100.6950) Tomographic image processing; (170.1530) Cell analysis; (170.4500) Optical coherence tomography; (170.6900) Three-dimensional microscopy

References

  1. Exp Cell Res. 2003 Sep 10;289(1):58-66 - PubMed
  2. Opt Lett. 2006 Aug 15;31(16):2450-2 - PubMed
  3. Opt Express. 2005 Feb 21;13(4):1131-7 - PubMed
  4. Appl Opt. 2003 Jun 1;42(16):3038-46 - PubMed
  5. Nat Rev Cancer. 2011 Jun 24;11(7):512-22 - PubMed
  6. Biophys J. 2008 Oct;95(8):4077-88 - PubMed
  7. Proc Natl Acad Sci U S A. 2012 May 8;109(19):7175-80 - PubMed
  8. J Cell Sci. 2001 Mar;114(Pt 5):1025-36 - PubMed
  9. Tissue Eng Part A. 2011 Mar;17(5-6):713-24 - PubMed
  10. Sci Rep. 2016 Mar 24;6:23483 - PubMed
  11. Opt Lett. 1998 Feb 15;23(4):244-6 - PubMed
  12. Sci Rep. 2016 Oct 20;6:35209 - PubMed
  13. PLoS One. 2014 Apr 16;9(4):e90976 - PubMed
  14. J Biomed Opt. 2013 Dec;18(12):121515 - PubMed
  15. PLoS One. 2012;7(3):e33476 - PubMed
  16. Opt Lett. 2016 Feb 1;41(3):508-11 - PubMed
  17. PLoS Comput Biol. 2014 Aug 14;10(8):e1003774 - PubMed
  18. Clin Exp Metastasis. 2013 Jun;30(5):615-30 - PubMed
  19. Nat Photonics. 2015;9:440-443 - PubMed
  20. Opt Lett. 2004 Apr 1;29(7):736-8 - PubMed
  21. Opt Express. 2006 Aug 7;14(16):7159-71 - PubMed
  22. Nat Rev Cancer. 2009 Feb;9(2):108-22 - PubMed
  23. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 - PubMed
  24. Nat Photonics. 2015 Feb;9(2):113-119 - PubMed
  25. Nat Phys. 2007 Feb 1;3(2):129-134 - PubMed
  26. Crit Rev Oncol Hematol. 2012 Aug;83(2):170-83 - PubMed
  27. Biomed Opt Express. 2013 Aug 30;4(10):1890-908 - PubMed
  28. J Biomed Opt. 2013 Dec;18(12):121512 - PubMed
  29. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):881-6 - PubMed
  30. Biomed Opt Express. 2016 Mar 24;7(4):1511-24 - PubMed
  31. Nat Methods. 2013 May;10(5):413-20 - PubMed
  32. Exp Cell Res. 2013 Oct 1;319(16):2396-408 - PubMed
  33. Biophys J. 2016 Apr 26;110(8):1858-68 - PubMed
  34. J Biophotonics. 2015 Apr;8(4):279-302 - PubMed
  35. Biomed Opt Express. 2015 Mar 03;6(4):1124-34 - PubMed
  36. PLoS One. 2009 Jul 24;4(7):e6382 - PubMed
  37. Nat Photonics. 2014 Sep 1;8:710-715 - PubMed
  38. J Opt Soc Am A Opt Image Sci Vis. 2005 Jul;22(7):1380-8 - PubMed
  39. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  40. Nat Mater. 2011 Jun;10(6):469-75 - PubMed
  41. BMC Med. 2008 Apr 28;6:11 - PubMed
  42. Differentiation. 2013 Oct;86(3):121-5 - PubMed
  43. Methods. 2016 Feb 1;94:4-12 - PubMed
  44. Opt Express. 2011 Jun 20;19(13):12141-55 - PubMed
  45. Biomed Opt Express. 2012 Jan 1;3(1):153-9 - PubMed
  46. Biomed Opt Express. 2014 Aug 08;5(9):2988-3000 - PubMed
  47. Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 - PubMed
  48. Appl Phys Lett. 2012 Nov 26;101(22):221117 - PubMed
  49. Cell. 2009 Nov 25;139(5):891-906 - PubMed
  50. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2898-903 - PubMed
  51. Nat Rev Mol Cell Biol. 2003 Mar;4(3):237-43 - PubMed
  52. Opt Lett. 2008 Aug 1;33(15):1696-8 - PubMed
  53. Cancer Cell. 2005 Sep;8(3):241-54 - PubMed
  54. Nat Mater. 2013 Sep;12(9):856-63 - PubMed
  55. Nat Methods. 2010 Dec;7(12):969-71 - PubMed
  56. PLoS One. 2012;7(2):e32572 - PubMed
  57. J Biomed Opt. 2008 Jul-Aug;13(4):044013 - PubMed
  58. Sci Transl Med. 2015 Aug 19;7(301):301ra130 - PubMed
  59. Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3095-104 - PubMed
  60. Biotechnol J. 2013 Apr;8(4):472-84 - PubMed
  61. J Biophotonics. 2009 Jul;2(6-7):370-9 - PubMed
  62. Nat Methods. 2016 Apr 28;13(5):415-23 - PubMed
  63. Nat Commun. 2015 Feb 19;6:6364 - PubMed
  64. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT1-OCT13 - PubMed
  65. PLoS One. 2011 Mar 29;6(3):e17833 - PubMed

Publication Types

Grant support