Display options
Share it on

Beilstein J Nanotechnol. 2017 Feb 01;8:313-324. doi: 10.3762/bjnano.8.34. eCollection 2017.

Nanoscale isoindigo-carriers: self-assembly and tunable properties.

Beilstein journal of nanotechnology

Tatiana N Pashirova, Andrei V Bogdanov, Lenar I Musin, Julia K Voronina, Irek R Nizameev, Marsil K Kadirov, Vladimir F Mironov, Lucia Ya Zakharova, Shamil K Latypov, Oleg G Sinyashin

Affiliations

  1. A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan, 420088, Russian Federation.

PMID: 28243570 PMCID: PMC5301918 DOI: 10.3762/bjnano.8.34

Abstract

Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic-lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1'-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate) was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.

Keywords: drug delivery systems; dyes; isoindigo; nanoparticles; self-assembly; surfactants

References

  1. Br J Haematol. 2000 Nov;111(2):711-2 - PubMed
  2. Br J Cancer. 2001 Jan;84(2):283-9 - PubMed
  3. J Biotechnol. 2001 Apr 27;87(1):83-90 - PubMed
  4. Oncogene. 2001 Jun 28;20(29):3786-97 - PubMed
  5. Leuk Lymphoma. 2002 Sep;43(9):1763-8 - PubMed
  6. Eur J Pharm Sci. 2005 Jan;24(1):67-75 - PubMed
  7. J Enzyme Inhib Med Chem. 2004 Oct;19(5):417-23 - PubMed
  8. Bioorg Med Chem. 2006 Jan 1;14(1):237-46 - PubMed
  9. Eur J Med Chem. 2006 Jan;41(1):88-100 - PubMed
  10. J Am Chem Soc. 2006 Jan 18;128(2):492-501 - PubMed
  11. Pharmazie. 2006 Apr;61(4):274-7 - PubMed
  12. J Med Chem. 2007 Aug 23;50(17):4027-37 - PubMed
  13. J Med Chem. 2008 Jun 12;51(11):3288-96 - PubMed
  14. Nano Lett. 2008 Sep;8(9):2906-12 - PubMed
  15. Angew Chem Int Ed Engl. 2009;48(2):274-88 - PubMed
  16. Biologics. 2007 Jun;1(2):151-62 - PubMed
  17. Leuk Res. 2010 Feb;34(2):e75-7 - PubMed
  18. Int J Pharm. 2010 Jan 29;385(1-2):113-42 - PubMed
  19. Langmuir. 2010 Apr 6;26(7):4642-54 - PubMed
  20. Biomaterials. 2010 Apr;31(11):3043-53 - PubMed
  21. DNA Cell Biol. 2010 Oct;29(10):639-46 - PubMed
  22. J Phys Chem B. 2011 Apr 28;115(16):4671-9 - PubMed
  23. Mol Biol Rep. 2012 Apr;39(4):3853-61 - PubMed
  24. Mini Rev Med Chem. 2012 Feb;12(2):98-119 - PubMed
  25. ChemMedChem. 2012 May;7(5):777-91 - PubMed
  26. Org Biomol Chem. 2013 Feb 14;11(6):886-95 - PubMed
  27. Pharmacol Rev. 2013 Jan;65(1):315-499 - PubMed
  28. Pharmacol Rep. 2013;65(2):313-35 - PubMed
  29. Nanoscale. 2013 Sep 21;5(18):8307-8325 - PubMed
  30. Phys Chem Chem Phys. 2013 Oct 28;15(40):17016-28 - PubMed
  31. J Photochem Photobiol B. 2013 Oct 5;127:18-27 - PubMed
  32. Adv Colloid Interface Sci. 2013 Nov;199-200:1-14 - PubMed
  33. Chem Rev. 2013 Oct 9;113(10):7880-929 - PubMed
  34. Biomaterials. 2013 Dec;34(38):10238-48 - PubMed
  35. Adv Drug Deliv Rev. 2014 Jul;74:53-74 - PubMed
  36. Adv Drug Deliv Rev. 2014 May;71:34-57 - PubMed
  37. Int J Mol Sci. 2013 Nov 05;14(11):21899-942 - PubMed
  38. Bioorg Med Chem Lett. 2014 Jan 1;24(1):268-70 - PubMed
  39. Colloids Surf B Biointerfaces. 2014 Mar 1;115:71-8 - PubMed
  40. Chem Soc Rev. 2014 Jun 21;43(12):4199-221 - PubMed
  41. Faraday Discuss. 2013;166:285-301 - PubMed
  42. Chem Soc Rev. 2014 Jul 7;43(13):4449-69 - PubMed
  43. Molecules. 2014 Jun 23;19(6):8589-609 - PubMed
  44. Nanomedicine (Lond). 2014 May;9(6):877-94 - PubMed
  45. ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14533-42 - PubMed
  46. Drug Res (Stuttg). 2015 Jul;65(7):373-9 - PubMed
  47. Molecules. 2014 Aug 25;19(9):13076-92 - PubMed
  48. Phys Chem Chem Phys. 2014 Dec 28;16(48):26672-83 - PubMed
  49. Trends Pharmacol Sci. 2014 Nov;35(11):556-66 - PubMed
  50. Colloids Surf B Biointerfaces. 2015 Mar 1;127:266-73 - PubMed
  51. Cancer Lett. 2015 Jun 1;361(2):251-61 - PubMed
  52. Nanoscale. 2015 Apr 21;7(15):6729-36 - PubMed
  53. Beilstein J Nanotechnol. 2015 Feb 24;6:546-58 - PubMed
  54. Adv Mater. 2015 May 27;27(20):3170-4 - PubMed
  55. Angew Chem Int Ed Engl. 2015 Jun 1;54(23):6755-60 - PubMed
  56. Biomaterials. 2015 Dec;71:1-10 - PubMed
  57. Curr Top Med Chem. 2016;16(11):1262-89 - PubMed
  58. J Control Release. 2015 Dec 10;219:383-395 - PubMed
  59. Chemistry. 2015 Dec 1;21(49):17657-63 - PubMed
  60. Adv Drug Deliv Rev. 2016 Mar 1;98:113-33 - PubMed
  61. Nano Today. 2016 Feb;11(1):13-30 - PubMed
  62. Chem Commun (Camb). 2016 May 25;52(42):6860-72 - PubMed
  63. Drug Discov Today. 2016 Aug;21(8):1321-9 - PubMed
  64. Eur J Med Chem. 2016 Nov 10;123:532-543 - PubMed
  65. Materials (Basel). 2013 Feb 21;6(2):580-608 - PubMed
  66. Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28 - PubMed

Publication Types