Display options
Share it on

Rouxs Arch Dev Biol. 1987 Oct;196(7):407-413. doi: 10.1007/BF00399140.

Movement of mitochondria in the ovarian trophic cord of Dysdercus intermedius (Heteroptera) resembles nerve axonal transport.

Roux's archives of developmental biology : the official organ of the EDBO

Frank Dittmann, Dieter G Weiss, Axel Münz

Affiliations

  1. Institut für Biologie III (Zoologie/Entwicklungsphysiologie), Universität Tübingen, Auf der Morgenstelle 28, D-7400, Tübingen, Germany.
  2. Institut für Zoologie, Technische Universität München, Lichtenbergstrasse 4, D-8046, Garching, Germany.

PMID: 28305388 DOI: 10.1007/BF00399140

Abstract

The motile behaviour of mitochondria in the ovarian trophic cord of the red cotton bug, Dysdercus intermedius, was observed optically using video-enhanced differential interference contrast (AVEC-DIC) microscopy. The motion of 258 video-recorded mitochondria was analysed of which 10%-30% were found to move during the observation periods. Of the moving mitochondria 76% travelled towards the oocyte with an average velocity of 3.37 μm/ min, and 24% towards the tropharium with 2.84 μm/min. The movement was found to be basically of the saltatory type I as known from nerve axons characterized by the absence of directional reversal. In some cases short periods of interrupted motion of type II, i.e. with local oscillations, were observed. Individual mitochondria often showed velocity variations during the excursions. The hemipteran trophic cords are known to contain numerous parallel microtubules. As the observed type of mitochondrial motility resembles axonal transport, a modified transport hypothesis is presented for the microtubule-based motility of organelles in the nurse strands of telotrophic insect ovarioles.

Keywords: AVEC-DIC microscopy; Dysdercus intermedius; Insect telotrophic ovariole; Mitochondria transport; Ovarian trophic cord

References

  1. Nature. 1970 Oct 3;228(5266):80-1 - PubMed
  2. J Cell Biol. 1985 May;100(5):1736-52 - PubMed
  3. Cell Tissue Res. 1982;227(3):609-17 - PubMed
  4. J Embryol Exp Morphol. 1986 Apr;93:291-301 - PubMed
  5. Tissue Cell. 1981;13(1):105-25 - PubMed
  6. Nature. 1980 Jul 3;286(5768):84-6 - PubMed
  7. J Cell Biol. 1970 Jul;46(1):191-8 - PubMed
  8. Int Rev Cytol. 1972;32:93-137 - PubMed
  9. Z Naturforsch B. 1967 Apr;22(4):459 - PubMed
  10. Adv Neurol. 1975;12:283-96 - PubMed
  11. Annu Rev Biophys Biophys Chem. 1985;14:265-90 - PubMed
  12. J Cell Biol. 1985 Jan;100(1):322-6 - PubMed
  13. J Microsc. 1983 Jan;129(Pt 1):3-17 - PubMed
  14. Cell Motil Cytoskeleton. 1986;6(2):128-35 - PubMed
  15. Cell Motil Cytoskeleton. 1987;7(1):20-30 - PubMed
  16. Can J Physiol Pharmacol. 1979 Oct;57(10):1182-6 - PubMed
  17. FEBS Lett. 1985 Nov 25;193(1):22-6 - PubMed
  18. Z Zellforsch Mikrosk Anat. 1968;92(2):186-96 - PubMed
  19. J Physiol. 1977 Feb;265(2):507-19 - PubMed
  20. Nature. 1985 Aug 15-21;316(6029):645-7 - PubMed
  21. Tissue Cell. 1981;13(2):321-35 - PubMed
  22. Int Rev Cytol. 1986;104:251-352 - PubMed
  23. Roux Arch Dev Biol. 1987 Sep;196 (6):391-396 - PubMed
  24. Cell Tissue Res. 1979 Jan 30;196(1):103-16 - PubMed
  25. J Physiol. 1982 Jul;328:469-84 - PubMed
  26. Cell. 1985 Aug;42(1):39-50 - PubMed
  27. Z Zellforsch Mikrosk Anat. 1972;123(3):395-410 - PubMed
  28. J Cell Sci. 1986 Feb;80:159-69 - PubMed
  29. Cell Motil. 1981;1(3):291-302 - PubMed
  30. Tissue Cell. 1986;18(5):753-64 - PubMed
  31. J Cell Sci. 1970 Mar;6(2):431-49 - PubMed
  32. J Cell Biol. 1984 Nov;99(5):1785-93 - PubMed
  33. Brain Res. 1987 May 26;412(1):96-106 - PubMed

Publication Types