Display options
Share it on

Rouxs Arch Dev Biol. 1989 Jun;198(2):57-64. doi: 10.1007/BF02447740.

The metamorphic switch in hemoglobin phenotype ofXenopus laevis involves erythroid cell replacement.

Roux's archives of developmental biology : the official organ of the EDBO

Rudolf Weber, Marianne Geiser, Peter Müller, Erika Sandmeier, Toni Wyler

Affiliations

  1. Abteilung für Zell-und Entwicklungsbiologie, Zoologisches Institut, Baltzerstrasse 4, CH-3012, Bern, Switzerland.

PMID: 28305873 DOI: 10.1007/BF02447740

Abstract

To elucidate the cellular basis of hemoglobin transition inXenopus laevis the distribution of larval and adult hemoglobins was analyzed by indirect immunofluorescence in the circulating erythrocytes during metamorphosis. In addition, the morphological characteristics as well as the capacity for synthesis of DNA and hemoglobin in the erythrocytes were followed during the same developmental period. Our quantitative analysis on the distribution of larval and adult hemoglobins suggests that they are localized in different cells. Hemoglobin transition, therefore, most likely reflects replacement of the larval erythrocyte population by new cells which are committed to adult globin synthesis. Since hemoglobin transition is not accompanied by an increase in the abundance of immature erythroid cells with active DNA synthesis, we assume that the presumptive adult erythroid cells are released into circulation at a relatively advanced stage of maturation. The decline in the synthesis of DNA and larval hemoglobin further indicates that cessation of cell renewal in the larval erythrocyte population may represent a decisive step in hemoglobin transition.

Keywords: Erythrocytes; Hemoglobin transition; Indirect immunofluorescence; Metamorphosis; Xenopus laevis

References

  1. J Mol Biol. 1985 Aug 20;184(4):611-20 - PubMed
  2. Adv Immunol. 1982;32:157-252 - PubMed
  3. Dev Biol. 1981 Dec;88(2):325-32 - PubMed
  4. J Exp Zool. 1972 Nov;182(2):271-80 - PubMed
  5. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5592-6 - PubMed
  6. Wilehm Roux Arch Dev Biol. 1980 Feb;188(1):75-80 - PubMed
  7. Proc Natl Acad Sci U S A. 1970 Sep;67(1):32-6 - PubMed
  8. J Cell Sci. 1974 Jul;15(2):347-57 - PubMed
  9. J Mol Biol. 1968 Mar 28;32(3):502-4 - PubMed
  10. Wilehm Roux Arch Dev Biol. 1977 Dec;183(4):307-323 - PubMed
  11. J Mol Biol. 1968 Mar 28;32(3):493-502 - PubMed
  12. J Morphol. 1966 May;119(1):1-6 - PubMed
  13. J Microsc. 1974 Mar;100(2):213-7 - PubMed
  14. Cell. 1980 Sep;21(2):555-64 - PubMed
  15. J Cell Biol. 1971 May 1;49(2):390-404 - PubMed
  16. Anal Biochem. 1982 Jan 1;119(1):142-7 - PubMed
  17. J Cell Biol. 1970 Dec;47(3):767-72 - PubMed
  18. Nucleic Acids Res. 1985 Aug 12;13(15):5407-21 - PubMed
  19. Cell. 1983 Jan;32(1):45-53 - PubMed
  20. Arch Biochem Biophys. 1961 Oct;95:25-35 - PubMed
  21. Dev Biol. 1979 Oct;72(2):350-63 - PubMed
  22. Proc Natl Acad Sci U S A. 1965 Sep;54(3):967-74 - PubMed
  23. Roux Arch Dev Biol. 1988 Dec;197(7):406-412 - PubMed
  24. Dev Biol. 1983 Sep;99(1):50-60 - PubMed
  25. J Embryol Exp Morphol. 1970 Apr;23(2):299-309 - PubMed
  26. Dev Biol. 1970 Apr;21(4):557-83 - PubMed

Publication Types