Display options
Share it on

Sci Rep. 2017 Apr 12;7:46197. doi: 10.1038/srep46197.

A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.

Scientific reports

Richard L Taylor, Christopher D B Bentley, Julen S Pedernales, Lucas Lamata, Enrique Solano, André R R Carvalho, Joseph J Hope

Affiliations

  1. Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia.
  2. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, Bilbao, 48080, Spain.
  3. IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
  4. ARC Centre for Quantum Computation and Communication Technology, Australian National University, Canberra, ACT 0200, Australia.

PMID: 28401945 PMCID: PMC5388870 DOI: 10.1038/srep46197

Abstract

Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10

References

  1. Phys Rev Lett. 2012 May 11;108(19):190502 - PubMed
  2. Nat Commun. 2015 Jul 08;6:7654 - PubMed
  3. Science. 1996 Aug 23;273(5278):1073-8 - PubMed
  4. Phys Rev Lett. 2014 Nov 28;113(22):220501 - PubMed
  5. Phys Rev Lett. 2015 Nov 20;115(21):213001 - PubMed
  6. Nature. 2016 Jun 08;534(7606):222-6 - PubMed
  7. Phys Rev Lett. 2012 Nov 16;109(20):200501 - PubMed
  8. J Res Natl Inst Stand Technol. 1998 May-Jun;103(3):259-328 - PubMed
  9. Phys Rev Lett. 2006 Aug 4;97(5):050505 - PubMed
  10. Phys Rev Lett. 2016 Apr 8;116(14 ):143002 - PubMed
  11. Science. 2009 Oct 2;326(5949):108-11 - PubMed
  12. Phys Rev Lett. 2009 Oct 2;103(14):140501 - PubMed
  13. Phys Rev Lett. 2011 Apr 1;106(13):130506 - PubMed
  14. Phys Rev Lett. 2013 May 17;110(20):203001 - PubMed
  15. Nature. 2016 Jun 22;534(7608):516-9 - PubMed
  16. Phys Rev Lett. 1993 Feb 8;70(6):818-821 - PubMed
  17. Phys Rev Lett. 2010 Aug 27;105(9):090502 - PubMed
  18. Phys Rev Lett. 2003 Oct 10;91(15):157901 - PubMed
  19. Nature. 2011 Feb 24;470(7335):486-91 - PubMed
  20. Phys Rev Lett. 2004 Sep 3;93(10):100502 - PubMed
  21. Nat Commun. 2012 Jun 06;3:880 - PubMed
  22. Phys Rev Lett. 2016 Aug 5;117(6):060505 - PubMed
  23. Opt Express. 2016 Jul 25;24(15):16638-48 - PubMed
  24. Opt Lett. 2011 Apr 1;36(7):1275-7 - PubMed
  25. Nature. 2008 Jun 19;453(7198):1008-15 - PubMed
  26. Science. 2011 Oct 7;334(6052):57-61 - PubMed
  27. Science. 2013 Mar 8;339(6124):1164-9 - PubMed
  28. Nature. 2011 Jun 29;474(7353):589-97 - PubMed

Publication Types