Display options
Share it on

Chemistry. 2017 Sep 07;23(50):12114-12119. doi: 10.1002/chem.201701216. Epub 2017 May 02.

Hydroxylated Fluorescent Dyes for Live-Cell Labeling: Synthesis, Spectra and Super-Resolution STED.

Chemistry (Weinheim an der Bergstrasse, Germany)

Alexey N Butkevich, Vladimir N Belov, Kirill Kolmakov, Viktor V Sokolov, Heydar Shojaei, Sven C Sidenstein, Dirk Kamin, Jessica Matthias, Rifka Vlijm, Johann Engelhardt, Stefan W Hell

Affiliations

  1. Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry (MPIBPC), Am Fassberg 11, 37077, Göttingen, Germany.
  2. Department of Chemistry, St. Petersburg State University, Universitetskiy Pr. 26, 198504, St. Petersburg, Russia.
  3. German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

PMID: 28370443 PMCID: PMC5599963 DOI: 10.1002/chem.201701216

Abstract

Hydroxylated rhodamines, carbopyronines, silico- and germanorhodamines with absorption maxima in the range of 530-640 nm were prepared and applied in specific labeling of living cells. The direct and high-yielding entry to germa- and silaxanthones tolerates the presence of protected heteroatoms and may be considered for the syntheses of various sila- and germafluoresceins, as well as -rhodols. Application in stimulated emission depletion (STED) fluorescence microscopy revealed a resolution of 50-75 nm in one- and two-color imaging of vimentin-HaloTag fused protein and native tubulin. The established structure-property relationships allow for prediction of the spectral properties and the positions of spirolactone/zwitterion equilibria for the new analogues of rhodamines, carbo-, silico-, and germanorhodamines using simple additive schemes.

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: dyes/pigments; fluorescence; living cells; optical microscopy; rhodamines

References

  1. Nat Methods. 2014 Jul;11(7):731-3 - PubMed
  2. J Am Chem Soc. 2016 Aug 3;138(30):9365-8 - PubMed
  3. Chem Commun (Camb). 2011 Apr 14;47(14):4162-4 - PubMed
  4. J Am Chem Soc. 2013 Sep 11;135(36):13365-70 - PubMed
  5. Curr Opin Biotechnol. 2010 Dec;21(6):766-76 - PubMed
  6. Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250 - PubMed
  7. Eur J Biochem. 2002 Jan;269(2):494-501 - PubMed
  8. ACS Chem Biol. 2011 Jun 17;6(6):600-8 - PubMed
  9. J Biol Chem. 2003 Jan 3;278(1):585-90 - PubMed
  10. Nat Commun. 2016 Mar 04;7:10778 - PubMed
  11. Biophys J. 2010 Jan 6;98(1):158-63 - PubMed
  12. Chemistry. 2008;14(6):1784-92 - PubMed
  13. Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3290-4 - PubMed
  14. Nat Chem. 2013 Feb;5(2):132-9 - PubMed
  15. Beilstein J Org Chem. 2011;7:432-41 - PubMed
  16. Analyst. 2015 Feb 7;140(3):685-95 - PubMed
  17. Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3874-7 - PubMed
  18. Chem Biol. 2008 Feb;15(2):128-36 - PubMed
  19. ACS Nano. 2016 Sep 27;10(9):8215-22 - PubMed
  20. ACS Chem Biol. 2008 Jun 20;3(6):373-82 - PubMed
  21. Chemistry. 2016 Aug 8;22(33):11631-42 - PubMed
  22. PLoS One. 2013 Sep 16;8(9):e74200 - PubMed
  23. Sci Rep. 2016 May 25;6:26725 - PubMed
  24. Elife. 2016 Dec 09;5: - PubMed
  25. Chemistry. 2017 Sep 7;23(50):12114-12119 - PubMed
  26. Anal Chem. 2015 Sep 1;87(17):9061-9 - PubMed
  27. Biochemistry. 2016 May 10;55(18):2601-12 - PubMed

Publication Types