Display options
Share it on

R Soc Open Sci. 2017 Mar 22;4(3):160815. doi: 10.1098/rsos.160815. eCollection 2017 Mar.

Concurrence in the ability for lipid synthesis between life stages in insects.

Royal Society open science

Bertanne Visser, Denis S Willett, Jeffrey A Harvey, Hans T Alborn

Affiliations

  1. Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium; Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
  2. Chemistry Research Unit, Center of Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service , United States Department of Agriculture , 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
  3. Department of Ecological Sciences, VU University Amsterdam, Section Animal Ecology, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6700 EH Wageningen, The Netherlands.

PMID: 28405368 PMCID: PMC5383825 DOI: 10.1098/rsos.160815

Abstract

The ability to synthesize lipids is critical for an organism's fitness; hence, metabolic pathways, underlying lipid synthesis, tend to be highly conserved. Surprisingly, the majority of parasitoids deviate from this general metabolic model by lacking the ability to convert sugars and other carbohydrates into lipids. These insects spend the first part of their life feeding and developing in or on an arthropod host, during which they can carry over a substantial amount of lipid reserves. While many parasitoid species have been tested for lipogenic ability at the adult life stage, it has remained unclear whether parasitoid larvae can synthesize lipids. Here we investigate whether or not several insects can synthesize lipids during the larval stage using three ectoparasitic wasps (developing on the outside of the host) and the vinegar fly

Keywords: deuterium; evolution; fatty acid synthesis; metabolism

References

  1. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18730-5 - PubMed
  2. Arch Biochem Biophys. 1984 Feb 1;228(2):407-14 - PubMed
  3. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12011-6 - PubMed
  4. J Insect Physiol. 1999 Apr;45(4):393-400 - PubMed
  5. J Insect Physiol. 2015 Aug;79:27-35 - PubMed
  6. Arch Biochem Biophys. 1982 Jan;213(1):26-36 - PubMed
  7. Annu Rev Physiol. 1995;57:19-42 - PubMed
  8. Physiol Genomics. 2007 Mar 14;29(1):24-34 - PubMed
  9. Genome Biol Evol. 2012;4(8):752-62 - PubMed
  10. Annu Rev Entomol. 2011;56:103-21 - PubMed
  11. Annu Rev Entomol. 2006;51:25-44 - PubMed
  12. Science. 2001 Mar 30;291(5513):2613-6 - PubMed
  13. Mol Biochem Parasitol. 1997 Sep;88(1-2):175-85 - PubMed
  14. J Exp Biol. 2011 Nov 15;214(Pt 22):3808-21 - PubMed
  15. J Insect Physiol. 1997 Nov;43(12):1111-1116 - PubMed
  16. J Cell Sci. 2013 Apr 1;126(Pt 7):1541-52 - PubMed
  17. J Insect Physiol. 2003 Feb;49(2):141-7 - PubMed
  18. Biochemistry. 1989 May 30;28(11):4523-30 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8677-82 - PubMed
  20. Biochem Pharmacol. 2002 Sep;64(5-6):893-901 - PubMed
  21. Nat Rev Microbiol. 2007 Apr;5(4):287-97 - PubMed
  22. J Insect Physiol. 2008 Aug;54(8):1253-60 - PubMed
  23. J Insect Physiol. 2008 Sep;54(9):1315-22 - PubMed
  24. EMBO J. 2002 Nov 15;21(22):6162-73 - PubMed
  25. Curr Opin Neurobiol. 2013 Feb;23(1):17-23 - PubMed
  26. PLoS Genet. 2007 Nov;3(11):e199 - PubMed
  27. Eur J Biochem. 1972 Aug 18;29(1):188-96 - PubMed
  28. Biochem Genet. 1985 Aug;23(7-8):607-22 - PubMed

Publication Types