Display options
Share it on

R Soc Open Sci. 2017 Mar 01;4(3):160908. doi: 10.1098/rsos.160908. eCollection 2017 Mar.

A unified model of the standard genetic code.

Royal Society open science

Marco V José, Gabriel S Zamudio, Eberto R Morgado

Affiliations

  1. Theoretical Biology Group, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Mexico D.F . 04510 , Mexico.
  2. Facultad de Matemática, Física y Computación , Universidad Central 'Marta Abreu' de Las Villas , Santa Clara , Cuba.

PMID: 28405378 PMCID: PMC5383835 DOI: 10.1098/rsos.160908

Abstract

The Rodin-Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.

Keywords: aminoacyl-tRNA synthetases; automorphisms; group actions; polar requirement; standard genetic code; symmetry groups

References

  1. Phys Rev Lett. 1993 Dec 27;71(26):4401-4404 - PubMed
  2. Orig Life. 1976 Dec;7(4):389-97 - PubMed
  3. Genome Res. 1999 Aug;9(8):689-710 - PubMed
  4. Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36 - PubMed
  5. Mol Biol Evol. 2000 Apr;17(4):511-8 - PubMed
  6. Trends Biochem Sci. 2001 Oct;26(10):591-6 - PubMed
  7. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588-602 - PubMed
  8. Bull Math Biol. 2005 Jan;67(1):1-14 - PubMed
  9. J Mol Evol. 2005 Nov;61(5):597-607 - PubMed
  10. Math Biosci. 2006 Jul;202(1):156-74 - PubMed
  11. Orig Life Evol Biosph. 2007 Feb;37(1):83-103 - PubMed
  12. Bull Math Biol. 2007 Jan;69(1):215-43 - PubMed
  13. DNA Cell Biol. 2006 Nov;25(11):617-26 - PubMed
  14. RNA. 2007 Feb;13(2):161-9 - PubMed
  15. Biol Direct. 2007 Oct 23;2:24 - PubMed
  16. Heredity (Edinb). 2008 Apr;100(4):339-40 - PubMed
  17. Heredity (Edinb). 2008 Apr;100(4):341-55 - PubMed
  18. J Mol Evol. 2008 May;66(5):519-28 - PubMed
  19. Theory Biosci. 2008 Aug;127(3):249-70 - PubMed
  20. J Theor Biol. 2008 Aug 7;253(3):623-4 - PubMed
  21. PLoS One. 2009;4(2):e4340 - PubMed
  22. J Mol Evol. 1991 Nov;33(5):412-7 - PubMed
  23. J Mol Evol. 2009 Nov;69(5):555-67 - PubMed
  24. Bull Math Biol. 2011 Jul;73(7):1443-76 - PubMed
  25. Orig Life Evol Biosph. 2011 Aug;41(4):357-71 - PubMed
  26. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576-9 - PubMed
  27. Biol Direct. 2011 Feb 22;6:14 - PubMed
  28. Nature. 1990 Sep 13;347(6289):203-6 - PubMed
  29. Mol Biol Evol. 2013 Jul;30(7):1588-604 - PubMed
  30. Biol Direct. 2014 Jun 14;9:11 - PubMed
  31. Science. 1989 May 12;244(4905):673-9 - PubMed
  32. J Mol Evol. 1989 Oct;29(4):288-93 - PubMed
  33. Life (Basel). 2014 Aug 11;4(3):341-73 - PubMed
  34. Orig Life Evol Biosph. 2015 Jun;45(1-2):77-83 - PubMed
  35. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7484-8 - PubMed
  36. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7489-94 - PubMed
  37. J Biol Chem. 2015 Aug 7;290(32):19710-25 - PubMed
  38. RNA Biol. 2016;13(2):145-51 - PubMed
  39. Br Foreign Med Chir Rev. 1860 Apr;25(50):367-404 - PubMed
  40. Nature. 1988 May 12;333(6169):117-8 - PubMed
  41. Naturwissenschaften. 1973 Oct;60(10):447-59 - PubMed
  42. J Mol Biol. 1968 Dec;38(3):367-79 - PubMed
  43. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546-52 - PubMed
  44. Proc Natl Acad Sci U S A. 1966 Apr;55(4):966-74 - PubMed
  45. Cold Spring Harb Symp Quant Biol. 1966;31:1-9 - PubMed
  46. Proc Natl Acad Sci U S A. 1969 Oct;64(2):584-91 - PubMed
  47. Naturwissenschaften. 1977 Nov;64(11):541-65 - PubMed
  48. Proc Natl Acad Sci U S A. 1981 Jan;78(1):454-8 - PubMed
  49. Naturwissenschaften. 1981 May;68(5):217-28 - PubMed
  50. Naturwissenschaften. 1981 Jun;68(6):282-92 - PubMed
  51. Orig Life Evol Biosph. 1995 Dec;25(6):565-89 - PubMed
  52. Science. 1994 Jan 14;263(5144):191-7 - PubMed
  53. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8 - PubMed
  54. J Mol Evol. 1995 May;40(5):482-6 - PubMed
  55. J Mol Evol. 1995 May;40(5):487-98 - PubMed
  56. J Mol Evol. 1995 May;40(5):531-6 - PubMed
  57. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6729-34 - PubMed
  58. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4537-42 - PubMed
  59. Biosystems. 1996;39(2):117-25 - PubMed
  60. J Theor Biol. 1996 Sep 7;182(1):45-58 - PubMed
  61. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5183-8 - PubMed
  62. J Mol Evol. 1998 Sep;47(3):238-48 - PubMed

Publication Types