Display options
Share it on

Sci Rep. 2017 Apr 13;7(1):881. doi: 10.1038/s41598-017-00976-1.

Light Induced Electron-Phonon Scattering Mediated Resistive Switching in Nanostructured Nb Thin Film Superconductor.

Scientific reports

Shafaq Kazim, Alka Sharma, Sachin Yadav, Bikash Gajar, Lalit M Joshi, Monu Mishra, Govind Gupta, Sudhir Husale, Anurag Gupta, Sangeeta Sahoo, V N Ojha

Affiliations

  1. Time & Frequency and Electrical & Electronics Metrology, National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K. S Krishnan Road, New Delhi, 110012, India.
  2. Academy of Scientific and Innovative Research (AcSIR), National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K. S Krishnan Road, New Delhi, 110012, India.
  3. Advanced Materials & Devices Division, National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K. S Krishnan Road, New Delhi, 110012, India.
  4. Time & Frequency and Electrical & Electronics Metrology, National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K. S Krishnan Road, New Delhi, 110012, India. [email protected].
  5. Academy of Scientific and Innovative Research (AcSIR), National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K. S Krishnan Road, New Delhi, 110012, India. [email protected].

PMID: 28408755 PMCID: PMC5429844 DOI: 10.1038/s41598-017-00976-1

Abstract

The elemental Nb is mainly investigated for its eminent superconducting properties. In contrary, we report of a relatively unexplored property, namely, its superior optoelectronic property in reduced dimension. We demonstrate here that nanostructured Nb thin films (NNFs), under optical illumination, behave as room temperature photo-switches and exhibit bolometric features below its superconducting critical temperature. Both photo-switch and superconducting bolometric behavior are monitored by its resistance change with light in visible and near infrared (NIR) wavelength range. Unlike the conventional photodetectors, the NNF devices switch to higher resistive states with light and the corresponding resistivity change is studied with thickness and grain size variations. At low temperature in its superconducting state, the light exposure shifts the superconducting transition towards lower temperature. The room temperature photon sensing nature of the NNF is explained by the photon assisted electron-phonon scattering mechanism while the low temperature light response is mainly related to the heat generation which essentially changes the effective temperature for the device and the device is capable of sensing a temperature difference of few tens of milli-kelvins. The observed photo-response on the transport properties of NNFs can be very important for future superconducting photon detectors, bolometers and phase slip based device applications.

References

  1. ACS Nano. 2015 Feb 24;9(2):1099-107 - PubMed
  2. Sci Rep. 2015 Aug 25;5:13459 - PubMed
  3. Sci Rep. 2016 Jan 11;6:19138 - PubMed
  4. Sci Rep. 2014 Jul 29;4:5876 - PubMed
  5. Nat Nanotechnol. 2013 Jul;8(7):497-501 - PubMed
  6. Nat Nanotechnol. 2015 Jan;10(1):25-34 - PubMed
  7. Adv Mater. 2015 Jun 17;27(23):3525-32 - PubMed
  8. Nano Lett. 2014 Jun 11;14(6):3009-13 - PubMed
  9. Nano Lett. 2012 Nov 14;12(11):5740-3 - PubMed
  10. Phys Rev Lett. 2014 Oct 17;113(16):166801 - PubMed
  11. Nano Lett. 2013 May 8;13(5):2234-40 - PubMed
  12. Faraday Discuss. 2015;178:109-22 - PubMed
  13. Sci Rep. 2016 Mar 11;6:22939 - PubMed
  14. Nano Lett. 2011 Nov 9;11(11):4682-7 - PubMed
  15. ACS Nano. 2014 May 27;8(5):4133-56 - PubMed
  16. Sci Rep. 2015 Jun 23;5:11504 - PubMed
  17. Phys Rev Lett. 2009 Feb 13;102(6):066804 - PubMed
  18. Nano Lett. 2015 Sep 9;15(9):5875-82 - PubMed
  19. Nat Nanotechnol. 2012 Jun 03;7(7):472-8 - PubMed
  20. Phys Rev Lett. 2005 Sep 30;95(14):147003 - PubMed
  21. Opt Express. 2010 Mar 1;18(5):4066-73 - PubMed
  22. Sci Rep. 2014 Jan 28;4:3914 - PubMed
  23. Nat Nanotechnol. 2012 May 06;7(6):363-8 - PubMed
  24. Sci Rep. 2016 Jan 04;6:18689 - PubMed
  25. Nano Lett. 2009 Oct;9(10):3463-9 - PubMed
  26. Rev Sci Instrum. 2015 May;86(5):056107 - PubMed
  27. Nature. 2009 Jul 16;460(7253):371-5 - PubMed
  28. Sci Rep. 2015 Jun 02;5:10718 - PubMed

Publication Types