Display options
Share it on

Bioinform Biol Insights. 2017 Apr 18;11:1177932217702388. doi: 10.1177/1177932217702388. eCollection 2017.

In Silico Approach for Characterization and Comparison of Repeats in the Genomes of Oil and Date Palms.

Bioinformatics and biology insights

Jaire Alves Ferreira Filho, Lucas Soares de Brito, André Pereira Leão, Alexandre Alonso Alves, Eduardo Fernandes Formighieri, Manoel Teixeira Souza Júnior

Affiliations

  1. Graduate Program in Plant Biotechnology, Federal University of Lavras (UFLA), Lavras, Brazil.
  2. Embrapa Agroenergia, Parque Estação Biológica (PqEB), Brasília, Brazil.
  3. Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil.

PMID: 28469420 PMCID: PMC5402704 DOI: 10.1177/1177932217702388

Abstract

Transposable elements (TEs) are mobile genetic elements present in almost all eukaryotic genomes. Due to their typical patterns of repetition, discovery, and characterization, they demand analysis by various bioinformatics software. Probably, as a result of the need for a complex analysis, many genomes publicly available do not have these elements annotated yet. In this study, a de novo and homology-based identification of TEs and microsatellites was performed using genomic data from 3 palm species:

Keywords: Elaeis guineensis; Elaeis oleifera; Phoenix dactylifera; bioinformatics; transposable elements

Conflict of interest statement

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Genome Res. 2000 Jul;10(7):967-81 - PubMed
  2. Plant Physiol. 2001 Mar;125(3):1283-92 - PubMed
  3. Genome Res. 2001 Oct;11(10):1660-76 - PubMed
  4. Genome Res. 2002 Aug;12(8):1269-76 - PubMed
  5. Genome Biol. 2002 Sep 13;3(10):RESEARCH0053 - PubMed
  6. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3419-23 - PubMed
  7. Trends Genet. 1992 Mar;8(3):103-8 - PubMed
  8. Ann Bot. 2005 Jan;95(1):127-32 - PubMed
  9. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 - PubMed
  10. Nat Genet. 2005 Sep;37(9):997-1002 - PubMed
  11. Bioinformatics. 2006 Feb 1;22(3):361-2 - PubMed
  12. Mol Genet Genomics. 2006 Jul;276(1):1-12 - PubMed
  13. Science. 2006 Sep 15;313(5793):1596-604 - PubMed
  14. Curr Gene Ther. 2006 Oct;6(5):593-607 - PubMed
  15. Theor Appl Genet. 2007 Apr;114(6):1081-90 - PubMed
  16. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 - PubMed
  17. Bioinformation. 2005 Nov 22;1(2):64-8 - PubMed
  18. Trends Biotechnol. 2007 Nov;25(11):490-8 - PubMed
  19. Nat Rev Genet. 2007 Dec;8(12):973-82 - PubMed
  20. Plant Mol Biol. 2008 Aug;67(6):581-8 - PubMed
  21. Annu Rev Plant Biol. 2009;60:43-66 - PubMed
  22. Heredity (Edinb). 2010 Jun;104(6):520-33 - PubMed
  23. Plant J. 2010 Aug;63(4):584-98 - PubMed
  24. Nat Genet. 2010 Oct;42(10):833-9 - PubMed
  25. J Genet. 2010 Aug;89(2):135-45 - PubMed
  26. Chromosome Res. 2011 Aug;19(6):787-808 - PubMed
  27. Int J Mol Sci. 2012;13(4):4069-88 - PubMed
  28. J Biomed Biotechnol. 2012;2012:251364 - PubMed
  29. Curr Biol. 2012 Nov 6;22(21):R898-9 - PubMed
  30. Nat Rev Genet. 2013 Jan;14(1):49-61 - PubMed
  31. Nature. 2013 Aug 15;500(7462):335-9 - PubMed
  32. Nat Commun. 2013;4:2274 - PubMed
  33. Theor Appl Genet. 1994 Apr;88(1):1-6 - PubMed
  34. Brief Funct Genomics. 2014 Jul;13(4):276-95 - PubMed
  35. Mob DNA. 2014 Jun 03;5:17 - PubMed
  36. PLoS One. 2014 Aug 22;9(8):e104182 - PubMed
  37. Sci Rep. 2015 Jan 26;5:8018 - PubMed
  38. BMC Genet. 2015 Feb 15;16:18 - PubMed
  39. Genomics Insights. 2014 Sep 03;7:13-22 - PubMed
  40. Mob DNA. 2015 Aug 04;6:13 - PubMed
  41. BMC Genomics. 2015 Oct 15;16:795 - PubMed
  42. Cell. 1983 Nov;35(1):235-42 - PubMed
  43. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 - PubMed

Publication Types