Display options
Share it on

Sci Adv. 2017 Apr 14;3(4):e1602060. doi: 10.1126/sciadv.1602060. eCollection 2017 Apr.

Potential energy-driven spin manipulation via a controllable hydrogen ligand.

Science advances

Peter Jacobson, Matthias Muenks, Gennadii Laskin, Oleg Brovko, Valeri Stepanyuk, Markus Ternes, Klaus Kern

Affiliations

  1. Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
  2. Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.
  3. Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
  4. Institut de Physique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

PMID: 28439541 PMCID: PMC5392040 DOI: 10.1126/sciadv.1602060

Abstract

Spin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties, such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitions between these states is largely unknown. We address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen-functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a correlated

Keywords: Atomic Force Microscopy; Kondo effect; density functional theory; force spectroscopy; inelastic tunneling; molecular magnetism; nano magnetism; potential energy surfaces; scanning probe microscopy; scanning tunneling spectroscopy

References

  1. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 - PubMed
  2. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  3. Science. 2014 Mar 7;343(6175):1120-2 - PubMed
  4. Nano Lett. 2015 Jun 10;15(6):4024-8 - PubMed
  5. Science. 2014 May 30;344(6187):988-92 - PubMed
  6. Science. 2010 Jun 11;328(5984):1370-3 - PubMed
  7. J Am Chem Soc. 2011 Oct 26;133(42):16847-51 - PubMed
  8. Nat Mater. 2007 Jul;6(7):516-20 - PubMed
  9. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 - PubMed
  10. Nat Nanotechnol. 2014 Jan;9(1):64-8 - PubMed
  11. Nat Nanotechnol. 2009 Dec;4(12):803-10 - PubMed
  12. Nat Commun. 2017 Jan 11;8:14119 - PubMed
  13. Phys Rev Lett. 2007 Sep 21;99(12):126104 - PubMed
  14. Nano Lett. 2012 Jan 11;12(1):518-21 - PubMed
  15. Phys Rev Lett. 2010 Aug 20;105(8):086103 - PubMed
  16. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  17. Phys Rev Lett. 2012 Jun 29;108(26):266803 - PubMed
  18. Nat Commun. 2015 Oct 12;6:8536 - PubMed

Publication Types