Display options
Share it on

Genome Biol Evol. 2017 Apr 01;9(4):1072-1083. doi: 10.1093/gbe/evx064.

Core Genes Evolve Rapidly in the Long-Term Evolution Experiment with Escherichia coli.

Genome biology and evolution

Rohan Maddamsetti, Philip J Hatcher, Anna G Green, Barry L Williams, Debora S Marks, Richard E Lenski

Affiliations

  1. Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI.
  2. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI.
  3. Department of Systems Biology, Harvard Medical School, Boston, MA.
  4. Department of Computer Science, University of New Hampshire, Durham, NH.

PMID: 28379360 PMCID: PMC5406848 DOI: 10.1093/gbe/evx064

Abstract

Bacteria can evolve rapidly under positive selection owing to their vast numbers, allowing their genes to diversify by adapting to different environments. We asked whether the same genes that evolve rapidly in the long-term evolution experiment (LTEE) with Escherichia coli have also diversified extensively in nature. To make this comparison, we identified ∼2000 core genes shared among 60 E. coli strains. During the LTEE, core genes accumulated significantly more nonsynonymous mutations than flexible (i.e., noncore) genes. Furthermore, core genes under positive selection in the LTEE are more conserved in nature than the average core gene. In some cases, adaptive mutations appear to modify protein functions, rather than merely knocking them out. The LTEE conditions are novel for E. coli, at least in relation to its evolutionary history in nature. The constancy and simplicity of the environment likely favor the complete loss of some unused functions and the fine-tuning of others.

© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Keywords: core genome; experimental evolution; fine-tuning mutations; loss-of-function mutations; molecular evolution

References

  1. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12638-43 - PubMed
  2. Science. 2000 Feb 25;287(5457):1479-82 - PubMed
  3. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12412-7 - PubMed
  4. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2111-6 - PubMed
  5. Proc Biol Sci. 2015 Dec 22;282(1821):20152292 - PubMed
  6. Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):7899-906 - PubMed
  7. Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9107-12 - PubMed
  8. Nature. 1997 Jun 12;387(6634):703-5 - PubMed
  9. Elife. 2015 Oct 14;4: - PubMed
  10. Nat Rev Microbiol. 2015 Jan;13(1):13-27 - PubMed
  11. Science. 2011 Mar 18;331(6023):1433-6 - PubMed
  12. PLoS Biol. 2014 Feb 18;12(2):e1001789 - PubMed
  13. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 - PubMed
  14. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1072-7 - PubMed
  15. Nature. 2016 Aug 11;536(7615):165-70 - PubMed
  16. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):222-7 - PubMed
  17. Mol Biol Evol. 2010 Sep;27(9):2113-28 - PubMed
  18. Nat Rev Microbiol. 2010 Apr;8(4):260-71 - PubMed
  19. Bioinformatics. 2009 Jun 1;25(11):1422-3 - PubMed
  20. J Mol Biol. 2009 Dec 11;394(4):653-80 - PubMed
  21. Nature. 2013 Aug 15;500(7462):301-6 - PubMed
  22. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  23. Nat Genet. 2011 Nov 13;43(12):1275-80 - PubMed
  24. Antonie Van Leeuwenhoek. 1998 Jan;73(1):35-47 - PubMed
  25. J Bacteriol. 2012 Sep;194(18):5002-11 - PubMed
  26. Nucleic Acids Res. 2015 Jan;43(Database issue):D240-9 - PubMed
  27. Mol Syst Biol. 2014 Aug 22;10:747 - PubMed
  28. Mol Syst Biol. 2006;2:2006.0008 - PubMed
  29. Nat Rev Genet. 2013 Dec;14(12):827-39 - PubMed
  30. Bioessays. 2007 Sep;29(9):846-60 - PubMed
  31. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  32. Science. 1995 Jan 6;267(5194):87-90 - PubMed
  33. Mol Ecol. 2016 Jan;25(1):203-18 - PubMed
  34. J Biol Chem. 2016 Apr 22;291(17):9244-56 - PubMed
  35. J Bacteriol. 2001 May;183(9):2834-41 - PubMed
  36. Nature. 2012 Sep 27;489(7417):513-8 - PubMed
  37. Mol Biol Evol. 2015 Nov;32(11):2897-904 - PubMed
  38. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2217-22 - PubMed
  39. Proc Biol Sci. 1997 Sep 22;264(1386):1287-91 - PubMed
  40. Evolution. 2010 Oct;64(10):3024-34 - PubMed
  41. J Bacteriol. 2011 Jan;193(2):429-40 - PubMed
  42. Science. 2011 Apr 1;332(6025):106-9 - PubMed
  43. Science. 2014 Mar 21;343(6177):1366-9 - PubMed
  44. Science. 2011 Jun 3;332(6034):1193-6 - PubMed
  45. Proc Biol Sci. 2008 Feb 7;275(1632):277-84 - PubMed
  46. Genetics. 2006 Aug;173(4):1851-69 - PubMed
  47. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 - PubMed
  48. Elife. 2014 Sep 25;3: - PubMed
  49. Genetics. 2005 Feb;169(2):523-32 - PubMed
  50. Nature. 2015 Dec 3;528(7580):99-104 - PubMed
  51. PLoS Comput Biol. 2010 Apr 01;6(4):e1000732 - PubMed
  52. Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1677-84 - PubMed
  53. PLoS Biol. 2003 Oct;1(1):E19 - PubMed
  54. Science. 2010 Nov 19;330(6007):1099-102 - PubMed
  55. J Bacteriol. 2015 Mar;197(6):1017-25 - PubMed
  56. Science. 2013 Dec 13;342(6164):1364-7 - PubMed
  57. Nature. 2009 Oct 29;461(7268):1243-7 - PubMed
  58. Mol Biol Evol. 2015 Jun;32(6):1425-35 - PubMed
  59. Elife. 2015 Mar 25;4: - PubMed

Publication Types

Grant support