Display options
Share it on

Genes (Basel). 2017 May 04;8(5). doi: 10.3390/genes8050133.

A Genetic Population Isolate in The Netherlands Showing Extensive Haplotype Sharing and Long Regions of Homozygosity.

Genes

Metten Somers, Loes M Olde Loohuis, Maartje F Aukes, Bogdan Pasaniuc, Kees C L de Visser, René S Kahn, Iris E Sommer, Roel A Ophoff

Affiliations

  1. Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. [email protected].
  2. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA. [email protected].
  3. Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. [email protected].
  4. Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA. [email protected].
  5. Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA. [email protected].
  6. Department of General Practice, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherland. [email protected].
  7. Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. [email protected].
  8. Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. [email protected].
  9. Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands. [email protected].
  10. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA. [email protected].
  11. Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA. [email protected].

PMID: 28471380 PMCID: PMC5448007 DOI: 10.3390/genes8050133

Abstract

Genetic isolated populations have features that may facilitate genetic analyses and can be leveraged to improve power of mapping genes to complex traits. Our aim was to test the extent to which a population with a former history of geographic isolation and religious endogamy, and currently with one of the highest fertility rates in The Netherlands, shows signs of genetic isolation. For this purpose, genome-wide genotype data was collected of 72 unrelated individuals from this population as well as in a sample of 104 random control subjects from The Netherlands. Additional reference data from different populations and population isolates was available through HapMap and the Human Genome Diversity Project. We performed a number of analyses to compare the genetic structure between these populations: we calculated the pairwise genetic distance between populations, examined the extent of identical-by-descent (IBD) sharing and estimated the effective population size. Genetic analysis of this population showed consistent patterns of a population isolate at all levels tested. We confirmed that this population is most closely related to the Dutch control subjects, and detected high levels of IBD sharing and runs of homozygosity at equal or even higher levels than observed in previously described population isolates. The effective population size of this population was estimated to be several orders of magnitude smaller than that of the Dutch control sample. We conclude that the geographic isolation of this population combined with rapid population growth has resulted in a genetic isolate with great potential value for future genetic studies.

Keywords: IBD sharing; effective population size; genetic isolate; linkage disequilibrium; runs of homozygosity

References

  1. Nat Commun. 2013;4:2872 - PubMed
  2. Nat Genet. 1994 Dec;8(4):380-6 - PubMed
  3. Hum Mol Genet. 2004 Jan 1;13(1):25-33 - PubMed
  4. Hum Genet. 2003 May;112(5-6):534-41 - PubMed
  5. Science. 2002 Apr 12;296(5566):261-2 - PubMed
  6. Nat Genet. 2011 Mar 29;43(4):287-8 - PubMed
  7. Nat Rev Genet. 2009 Sep;10(9):639-50 - PubMed
  8. Nat Genet. 2014 Aug;46(8):818-25 - PubMed
  9. Nature. 2012 Aug 2;488(7409):96-9 - PubMed
  10. Bioinformatics. 2013 Jul 1;29(13):i180-8 - PubMed
  11. Eur J Hum Genet. 2013 Jan;21(1):89-94 - PubMed
  12. Genetics. 2002 Apr;160(4):1707-19 - PubMed
  13. Nat Genet. 2006 May;38(5):556-60 - PubMed
  14. PLoS Genet. 2014 Jan 30;10(1):e1004134 - PubMed
  15. Genome Biol. 2008;9(8):109 - PubMed
  16. Eur J Hum Genet. 2013 Nov;21(11):1277-85 - PubMed
  17. PLoS One. 2010 Nov 15;5(11):e13996 - PubMed
  18. Am J Hum Genet. 2002 Sep;71(3):565-74 - PubMed
  19. Nat Rev Genet. 2000 Dec;1(3):182-90 - PubMed
  20. Nature. 2008 Nov 6;456(7218):98-101 - PubMed
  21. Genome Res. 2009 Feb;19(2):318-26 - PubMed
  22. Eur J Hum Genet. 2013 Jun;21(6):659-65 - PubMed
  23. Am J Hum Genet. 2008 Sep;83(3):359-72 - PubMed
  24. Nature. 2015 Mar 19;519(7543):309-14 - PubMed
  25. Nat Genet. 2012 Dec;44(12):1326-9 - PubMed
  26. Eur J Hum Genet. 2004 Jul;12(7):527-34 - PubMed
  27. Am J Hum Genet. 2007 Nov;81(5):1084-97 - PubMed
  28. Hum Mol Genet. 2013 Oct 15;22(R1):R16-21 - PubMed
  29. PLoS One. 2009;4(2):e4654 - PubMed
  30. Am J Hum Genet. 2007 Sep;81(3):559-75 - PubMed
  31. Hum Hered. 2008;65(1):9-22 - PubMed
  32. Nat Genet. 2011 Oct 09;43(11):1127-30 - PubMed
  33. Hum Genet. 2009 Sep;126(3):457-71 - PubMed
  34. Science. 2008 Feb 22;319(5866):1100-4 - PubMed
  35. J Neurosci. 2015 Jun 10;35(23):8730-6 - PubMed
  36. Am J Hum Genet. 2012 Nov 2;91(5):809-22 - PubMed
  37. Science. 2008 Dec 12;322(5908):1702-5 - PubMed
  38. Eur J Hum Genet. 2009 Nov;17(11):1490-4 - PubMed
  39. BMC Genomics. 2012 Nov 17;13:636 - PubMed

Publication Types