Display options
Share it on

Sensors (Basel). 2017 Apr 24;17(4). doi: 10.3390/s17040938.

Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.

Sensors (Basel, Switzerland)

Lulu Zhou, Mingjun Cai, Ti Tong, Hongda Wang

Affiliations

  1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. [email protected].
  2. University of Chinese Academy of Sciences, Beijing 100049, China. [email protected].
  3. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. [email protected].
  4. The Second Hospital of Jilin University, Changchun 130041, China. [email protected].
  5. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. [email protected].

PMID: 28441775 PMCID: PMC5426934 DOI: 10.3390/s17040938

Abstract

Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

Keywords: atomic force microscopy; conventional florescence microscopy; correlation; super-resolution fluorescence microscopy

References

  1. Chem Soc Rev. 2012 May 7;41(9):3523-34 - PubMed
  2. Biochem J. 2008 Jun 15;412(3):415-23 - PubMed
  3. Nanomedicine (Lond). 2012 Oct;7(10):1625-37 - PubMed
  4. Phys Rev Lett. 1986 Mar 3;56(9):930-933 - PubMed
  5. Nanotechnology. 2012 Feb 17;23(6):062001 - PubMed
  6. Nat Methods. 2011 Jun;8(6):499-508 - PubMed
  7. Cell Res. 2014 Aug;24(8):959-76 - PubMed
  8. Mol Biotechnol. 2000 Oct;16(2):127-49 - PubMed
  9. Nanoscale. 2016 Oct 27;8(42):18027-18031 - PubMed
  10. Trends Cell Biol. 2015 Dec;25(12):730-48 - PubMed
  11. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477-81 - PubMed
  12. Biophys J. 2006 Apr 1;90(7):2404-13 - PubMed
  13. Molecules. 2011 Apr 13;16(4):3106-18 - PubMed
  14. Small. 2010 Dec 20;6(24):2858-62 - PubMed
  15. Biophys J. 2009 Mar 4;96(5):1970-84 - PubMed
  16. Curr Opin Neurobiol. 2004 Oct;14(5):599-609 - PubMed
  17. Nat Methods. 2012 Oct;9(10):938-9 - PubMed
  18. Cell. 2010 Dec 23;143(7):1047-58 - PubMed
  19. Curr Opin Biotechnol. 2009 Feb;20(1):4-13 - PubMed
  20. Mol Biol Cell. 2003 Apr;14(4):1558-69 - PubMed
  21. Annu Rev Biochem. 2008;77:127-48 - PubMed
  22. Analyst. 2012 Nov 21;137(22):5208-14 - PubMed
  23. Cytoskeleton (Hoboken). 2013 Nov;70(11):729-40 - PubMed
  24. Chem Rev. 2014 Mar 26;114(6):3189-202 - PubMed
  25. PLoS One. 2013 Jun 17;8(6):e66608 - PubMed
  26. Nat Methods. 2015 Jun;12(6):503-13 - PubMed
  27. Ultramicroscopy. 2000 Feb;82(1-4):253-8 - PubMed
  28. Biophys J. 2000 Apr;78(4):1725-35 - PubMed
  29. Nat Microbiol. 2016 Oct 26;1(11):16186 - PubMed
  30. Cold Spring Harb Protoc. 2012 Apr 01;2012(4):414-24 - PubMed
  31. J Biomed Opt. 2014;19(10):105003 - PubMed
  32. Biophys J. 2006 Dec 1;91(11):4258-72 - PubMed
  33. Nano Lett. 2009 Dec;9(12):4489-93 - PubMed
  34. Biophys J. 2010 Jan 6;98(1):158-63 - PubMed
  35. Biophys J. 2010 Mar 3;98(5):815-23 - PubMed
  36. Trends Cell Biol. 2011 Aug;21(8):461-9 - PubMed
  37. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8206-10 - PubMed
  38. Biophys J. 2002 Jun;82(6):2970-81 - PubMed
  39. Chem Commun (Camb). 2013 Apr 14;49(29):2980-2 - PubMed
  40. Integr Biol (Camb). 2012 Jun;4(6):615-27 - PubMed
  41. Nat Methods. 2006 Oct;3(10):793-5 - PubMed
  42. Nat Methods. 2013 Aug;10 (8):737-40 - PubMed
  43. Chemphyschem. 2014 Mar 17;15(4):647-50 - PubMed
  44. Biopolymers. 2016 Nov;106(6):889-900 - PubMed
  45. Nat Methods. 2013 Sep;10(9):847-54 - PubMed
  46. J Microsc. 2011 Sep;243(3):221-6 - PubMed
  47. Eur J Pharm Biopharm. 2010 Jan;74(1):33-40 - PubMed
  48. Nat Nanotechnol. 2017 Feb;12 (2):177-183 - PubMed
  49. Nat Chem Biol. 2009 Jun;5(6):383-90 - PubMed
  50. Science. 2007 Sep 21;317(5845):1749-53 - PubMed
  51. Nano Lett. 2015 Aug 12;15(8):4896-904 - PubMed
  52. Nat Biotechnol. 2003 Nov;21(11):1347-55 - PubMed
  53. J Neurochem. 2015 Nov;135(4):643-58 - PubMed
  54. Microsc Res Tech. 2014 Jul;77(7):502-9 - PubMed
  55. J Cell Sci. 2010 Nov 1;123(Pt 21):3621-8 - PubMed
  56. Mol Biol Cell. 2015 Sep 15;26(18):3190-204 - PubMed
  57. Nature. 2012 Dec 13;492(7428):293-7 - PubMed
  58. Nat Nanotechnol. 2008 May;3(5):261-9 - PubMed
  59. Nat Methods. 2006 May;3(5):347-55 - PubMed
  60. Biophys J. 2009 Mar 4;96(5):1952-60 - PubMed
  61. J Vis Exp. 2010 Oct 04;(44):null - PubMed
  62. Nat Immunol. 2013 Jan;14(1):82-9 - PubMed
  63. J Cell Sci. 2005 Nov 15;118(Pt 22):5315-23 - PubMed
  64. Science. 2006 Sep 15;313(5793):1642-5 - PubMed
  65. J Virol. 2014 Nov;88(22):13047-63 - PubMed
  66. Chem Soc Rev. 2015 Jun 7;44(11):3617-38 - PubMed

Publication Types