Display options
Share it on

ACS Appl Mater Interfaces. 2017 May 31;9(21):18039-18045. doi: 10.1021/acsami.7b02867. Epub 2017 May 16.

Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.

ACS applied materials & interfaces

Mohamad Insan Nugraha, Shohei Kumagai, Shun Watanabe, Mykhailo Sytnyk, Wolfgang Heiss, Maria Antonietta Loi, Jun Takeya

Affiliations

  1. Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, Groningen 9747AG, The Netherlands.
  2. Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
  3. JST, PRESTO , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
  4. Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7, 91058 Erlangen, Germany.
  5. Energie Campus Nürnberg (EnCN) , Fürther Straße 250, 90429 Nürnberg, Germany.

PMID: 28472887 PMCID: PMC5499821 DOI: 10.1021/acsami.7b02867

Abstract

PbS quantum dots (QDs) are remarkable semiconducting materials, which are compatible with low-cost solution-processed electronic device fabrication. Understanding the doping of these materials is one of the great research interests, as it is a necessary step to improve the device performance as well as to enhance the applicability of this system for diverse optoelectronic applications. Here, we report the efficient doping of the PbS QD films with the use of solution-processable organic molecules. By engineering the energy levels of the donor molecules and the PbS QDs through the use of different cross-linking ligands, we are able to control the characteristics of PbS field-effect transistors (FETs) from ambipolar to strongly n-type. Because the doping promotes trap filling, the charge carrier mobility is improved up to 0.64 cm

Keywords: benzyl viologen; doping; field-effect transistors; ligands; quantum dots

References

  1. Science. 2005 Oct 7;310(5745):86-9 - PubMed
  2. J Phys Chem B. 2006 Jan 19;110(2):671-3 - PubMed
  3. J Am Chem Soc. 2009 Jan 14;131(1):327-31 - PubMed
  4. Science. 2009 Jun 19;324(5934):1542-4 - PubMed
  5. Chem Rev. 2010 Jan;110(1):389-458 - PubMed
  6. Nano Lett. 2011 Nov 9;11(11):4764-7 - PubMed
  7. J Am Chem Soc. 2012 Feb 8;134(5):2457-60 - PubMed
  8. ACS Nano. 2012 Apr 24;6(4):3121-7 - PubMed
  9. Nat Nanotechnol. 2012 May 06;7(6):369-73 - PubMed
  10. Nat Nanotechnol. 2012 Sep;7(9):577-82 - PubMed
  11. Nat Commun. 2012;3:1216 - PubMed
  12. ACS Nano. 2013 Mar 26;7(3):2413-21 - PubMed
  13. Sci Rep. 2013;3:2004 - PubMed
  14. Nat Commun. 2013;4:2775 - PubMed
  15. Nano Lett. 2014 Feb 12;14(2):653-62 - PubMed
  16. Nano Lett. 2014 Mar 12;14(3):1559-66 - PubMed
  17. ACS Nano. 2014 Jun 24;8(6):5863-72 - PubMed
  18. J Am Chem Soc. 2014 Jun 4;136(22):7853-6 - PubMed
  19. Nat Mater. 2014 Aug;13(8):796-801 - PubMed
  20. Nat Mater. 2014 Aug;13(8):822-8 - PubMed
  21. Nano Lett. 2015 Mar 11;15(3):1822-8 - PubMed
  22. Adv Mater. 2015 Mar 25;27(12):2107-12 - PubMed
  23. Nano Lett. 2015 Oct 14;15(10):7155-60 - PubMed
  24. ACS Nano. 2015 Dec 22;9(12):11951-9 - PubMed
  25. Adv Mater. 2016 Feb 10;28(6):1176-207 - PubMed
  26. Science. 2016 Aug 26;353(6302): - PubMed
  27. ACS Nano. 2016 Sep 22;:null - PubMed
  28. Chem Commun (Camb). 2017 Jan 5;53(4):728-731 - PubMed
  29. Sci Adv. 2017 Sep 29;3(9):eaao1558 - PubMed

Publication Types