Display options
Share it on

Front Cell Neurosci. 2017 Apr 18;11:94. doi: 10.3389/fncel.2017.00094. eCollection 2017.

Protecting Mammalian Hair Cells from Aminoglycoside-Toxicity: Assessing Phenoxybenzamine's Potential.

Frontiers in cellular neuroscience

Paromita Majumder, Paulette A Moore, Guy P Richardson, Jonathan E Gale

Affiliations

  1. UCL Ear Institute, University College LondonLondon, UK.
  2. Sussex Neuroscience, School of Life Sciences, University of SussexFalmer, UK.
  3. Department of Cell and Developmental Biology, University College LondonLondon, UK.

PMID: 28503132 PMCID: PMC5408764 DOI: 10.3389/fncel.2017.00094

Abstract

Aminoglycosides (AGs) are widely used antibiotics because of their low cost and high efficacy against gram-negative bacterial infection. However, AGs are ototoxic, causing the death of sensory hair cells in the inner ear. Strategies aimed at developing or discovering agents that protect against aminoglycoside ototoxicity have focused on inhibiting apoptosis or more recently, on preventing antibiotic uptake by the hair cells. Recent screens for ototoprotective compounds using the larval zebrafish lateral line identified phenoxybenzamine as a potential protectant for aminoglycoside-induced hair cell death. Here we used live imaging of FM1-43 uptake as a proxy for aminoglycoside entry, combined with hair-cell death assays to evaluate whether phenoxybenzamine can protect mammalian cochlear hair cells from the deleterious effects of the aminoglycoside antibiotic neomycin. We show that phenoxybenzamine can block FM1-43 entry into mammalian hair cells in a reversible and dose-dependent manner, but pre-incubation is required for maximal inhibition of entry. We observed differential effects of phenoxybenzamine on FM1-43 uptake in the two different types of cochlear hair cell in mammals, the outer hair cells (OHCs) and inner hair cells (IHCs). The requirement for pre-incubation and reversibility suggests an intracellular rather than an extracellular site of action for phenoxybenzamine. We also tested the efficacy of phenoxybenzamine as an otoprotective agent. In mouse cochlear explants the hair cell death resulting from 24 h exposure to neomycin was steeply dose-dependent, with 50% cell death occurring at ~230 μM for both IHC and OHC. We used 250 μM neomycin in subsequent hair-cell death assays. At 100 μM with 1 h pre-incubation, phenoxybenzamine conferred significant protection to both IHCs and OHCs, however at higher concentrations phenoxybenzamine itself showed clear signs of ototoxicity and an additive toxic effect when combined with neomycin. These data do not support the use of phenoxybenzamine as a therapeutic agent in mammalian inner ear. Our findings do share parallels with the observations from the zebrafish lateral line model but they also highlight the necessity for validation in the mammalian system and the potential for differential effects on sensory hair cells from different species, in different systems and even between cells in the same organ.

Keywords: FM 1-43; aminoglycosides; cochlea; hair cells; inner ear; mechanoelectrical transduction channels; organotypic culture; ototoxicity

References

  1. Curr Top Membr. 2007;59:171-89 - PubMed
  2. Otolaryngol Head Neck Surg. 2004 Mar;130(3 Suppl):S79-82 - PubMed
  3. Front Cell Neurosci. 2015 Apr 28;9:143 - PubMed
  4. J Assoc Res Otolaryngol. 2009 Jun;10(2):205-19 - PubMed
  5. Brain Res. 1995 Dec 15;704(1):135-40 - PubMed
  6. PLoS One. 2011;6(7):e22347 - PubMed
  7. J Assoc Res Otolaryngol. 2009 Jun;10(2):191-203 - PubMed
  8. Experientia. 1964 May 15;20(5):272-3 - PubMed
  9. Lab Invest. 1986 Apr;54(4):385-93 - PubMed
  10. J Comp Neurol. 1995 May 8;355(3):405-17 - PubMed
  11. Am J Otolaryngol. 1979 Fall;1(1):15-27 - PubMed
  12. Open Biol. 2012 May;2(5):120068 - PubMed
  13. Acta Otolaryngol. 1975 Jan-Feb;79(1-2):24-32 - PubMed
  14. J Neurobiol. 2002 Feb 5;50(2):81-92 - PubMed
  15. Hear Res. 1989 Feb;37(3):203-17 - PubMed
  16. J Neurosci. 2001 Sep 15;21(18):7013-25 - PubMed
  17. J Crit Care. 1995 Mar;10(1):33-43 - PubMed
  18. J Neurosci. 2008 May 7;28(19):4918-28 - PubMed
  19. Nat Neurosci. 2009 May;12(5):553-8 - PubMed
  20. J Auton Pharmacol. 1995 Oct;15(5):371-7 - PubMed
  21. Hear Res. 2012 Dec;294(1-2):153-65 - PubMed
  22. Hear Res. 2016 Aug;338:52-63 - PubMed
  23. J Biol Chem. 2014 Jan 24;289(4):2318-30 - PubMed
  24. Biophys J. 2002 Apr;82(4):1964-74 - PubMed
  25. Biochemistry. 1996 Nov 19;35(46):14659-64 - PubMed
  26. Anesthesiol Res Pract. 2013;2013:978615 - PubMed
  27. Audiol Neurootol. 2000 Jan-Feb;5(1):3-22 - PubMed
  28. J Physiol. 2000 Jun 15;525 Pt 3:641-54 - PubMed
  29. J Assoc Res Otolaryngol. 2010 Mar;11(1):27-37 - PubMed
  30. MBio. 2014 Sep 30;5(5):e01827-14 - PubMed
  31. J Neurosci. 2014 Aug 13;34(33):11085-95 - PubMed
  32. Hear Res. 2006 Mar;213(1-2):64-78 - PubMed
  33. J Neurophysiol. 1993 Oct;70(4):1593-605 - PubMed
  34. J Pharmacol. 1986 Jan-Mar;17(1):65-74 - PubMed
  35. AMA Arch Otolaryngol. 1959 Apr;69(4):390-7 - PubMed
  36. J Physiol. 2005 Sep 1;567(Pt 2):505-21 - PubMed
  37. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10984-9 - PubMed
  38. Biophys J. 2002 Apr;82(4):1953-63 - PubMed
  39. Int Urol Nephrol. 2000;32(1):67-71 - PubMed
  40. J Membr Biol. 1990 May;115(3):241-51 - PubMed
  41. J Assoc Res Otolaryngol. 2011 Dec;12 (6):729-40 - PubMed
  42. Biochim Biophys Acta. 2007 Aug;1772(8):1022-7 - PubMed
  43. Clin Ther. 2002 Jun;24(6):851-61; discussion 837 - PubMed
  44. J Neurosci. 2006 Oct 25;26(43):10992-1000 - PubMed
  45. J Neurophysiol. 2002 Apr;87(4):1738-48 - PubMed
  46. Hear Res. 2010 Sep 1;268(1-2):250-9 - PubMed
  47. J Clin Invest. 2015 Feb;125(2):583-92 - PubMed
  48. J Antimicrob Chemother. 2010 Nov;65(11):2347-58 - PubMed

Publication Types

Grant support