Display options
Share it on

Electrochim Acta. 2017 Mar 20;231:115-124. doi: 10.1016/j.electacta.2017.02.033.

Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts.

Electrochimica acta

Mounika Kodali, Carlo Santoro, Alexey Serov, Sadia Kabir, Kateryna Artyushkova, Ivana Matanovic, Plamen Atanassov

Affiliations

  1. Center Micro-Engineered Materials (CMEM), Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
  2. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

PMID: 28413228 PMCID: PMC5384433 DOI: 10.1016/j.electacta.2017.02.033

Abstract

The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in "clean" environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showed that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm

Keywords: Fe-AAPyr; High Power Generation; Microbial Fuel Cells; Oxygen Reduction Reaction; PGM-free catalysts

References

  1. Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10336-9 - PubMed
  2. J Am Chem Soc. 2004 Jul 14;126(27):8368-9 - PubMed
  3. Phys Chem Chem Phys. 2012 Oct 14;14(38):13332-43 - PubMed
  4. Appl Biochem Biotechnol. 2015 Mar;175(5):2637-46 - PubMed
  5. Chem Soc Rev. 2009 Jul;38(7):1926-39 - PubMed
  6. Chem Commun (Camb). 2013 Mar 28;49(25):2539-41 - PubMed
  7. Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12753-7 - PubMed
  8. ChemSusChem. 2015 Mar;8(5):828-34 - PubMed
  9. J Am Chem Soc. 2002 Jun 5;124(22):6480-6 - PubMed
  10. Biointerphases. 2015 Sep 10;10(3):031009 - PubMed
  11. Sci Rep. 2015 Nov 13;5:16596 - PubMed
  12. Sci Rep. 2016 May 12;6:25571 - PubMed
  13. Environ Sci Technol. 2013 Jun 18;47(12):6704-10 - PubMed
  14. ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7862-6 - PubMed
  15. Biosens Bioelectron. 2015 Jul 15;69:54-70 - PubMed
  16. Biosens Bioelectron. 2015 Oct 15;72:332-9 - PubMed
  17. Bioelectrochemistry. 2015 Dec;106(Pt A):240-7 - PubMed
  18. Biosens Bioelectron. 2009 May 15;24(9):2825-9 - PubMed
  19. Bioelectrochemistry. 2016 Apr;108:1-7 - PubMed
  20. Environ Sci Technol. 2014;48(3):2075-81 - PubMed
  21. Environ Sci Technol. 2006 Sep 1;40(17):5193-9 - PubMed
  22. ChemSusChem. 2016 Aug 23;9(16):2226-32 - PubMed
  23. Appl Microbiol Biotechnol. 2010 Feb;85(6):1665-71 - PubMed
  24. ChemSusChem. 2016 Oct 6;9(19):2788-2795 - PubMed
  25. Phys Chem Chem Phys. 2015 Jul 21;17(27):17785-9 - PubMed
  26. Nanoscale. 2015 Apr 28;7(16):7022-9 - PubMed
  27. Biosens Bioelectron. 2011 Dec 15;30(1):49-55 - PubMed
  28. Phys Chem Chem Phys. 2015 May 28;17(20):13235-44 - PubMed
  29. Bioresour Technol. 2015 Nov;195:180-7 - PubMed
  30. Biosens Bioelectron. 2016 Apr 15;78:229-35 - PubMed
  31. ChemSusChem. 2012 Jun;5(6):1012-9 - PubMed

Publication Types