Display options
Share it on

J Multivar Anal. 2017 Apr;156:70-88. doi: 10.1016/j.jmva.2017.01.011. Epub 2017 Feb 07.

High-dimensional tests for functional networks of brain anatomic regions.

Journal of multivariate analysis

Jichun Xie, Jian Kang

Affiliations

  1. Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27705.
  2. Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109.

PMID: 28413234 PMCID: PMC5391152 DOI: 10.1016/j.jmva.2017.01.011

Abstract

Exploring resting-state brain functional connectivity of autism spectrum disorders (ASD) using functional magnetic resonance imaging (fMRI) data has become a popular topic over the past few years. The data in a standard brain template consist of over 170,000 voxel specific points in time for each human subject. Such an ultra-high dimensionality makes the voxel-level functional connectivity analysis (involving four billion voxel pairs) both statistically and computationally inefficient. In this work, we introduce a new framework to identify the functional brain network at the anatomical region level for each individual. We propose two pairwise tests to detect region dependence, and one multiple testing procedure to identify global structures of the network. The limiting null distribution of each test statistic is derived. It is also shown that the tests are rate optimal when the alternative block networks are sparse. The numerical studies show that the proposed tests are valid and powerful. We apply our method to a resting-state fMRI study on autism and identify patient-unique and control-unique hub regions. These findings are biologically meaningful and consistent with the existing literature.

Keywords: Brain network; High dimensionality; Hypothesis testing; Sparsity; fMRI study

References

  1. Electron J Stat. 2012 Nov 9;6:2125-2149 - PubMed
  2. Neuroimage. 2005 Apr 15;25(3):859-67 - PubMed
  3. Eur J Neurosci. 1999 Jun;11(6):1891-8 - PubMed
  4. Mol Psychiatry. 2014 Jun;19(6):659-67 - PubMed
  5. Neuroreport. 2006 Nov 6;17(16):1687-90 - PubMed
  6. J Am Stat Assoc. 2016;111(513):229-240 - PubMed
  7. Trends Cogn Sci. 2004 Sep;8(9):418-25 - PubMed
  8. Neural Comput. 2001 Oct;13(10):2173-200 - PubMed
  9. Biol Psychiatry. 2003 Jan 15;53(2):121-9 - PubMed
  10. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 - PubMed
  11. Nat Rev Neurosci. 2009 Mar;10(3):186-98 - PubMed
  12. Neuroimage. 2010 Sep;52(3):1059-69 - PubMed
  13. Psychiatry Res. 2006 Oct 30;147(2-3):145-51 - PubMed
  14. Neuroimage. 2005 Feb 1;24(3):810-21 - PubMed
  15. Neuroimage. 2006 Aug 1;32(1):228-37 - PubMed
  16. Neuron. 2007 Dec 6;56(5):924-35 - PubMed
  17. Neuroimage. 1995 Jun;2(2):89-101 - PubMed
  18. Neuroimage. 2002 Jan;15(1):1-15 - PubMed
  19. Neuroimage. 2002 Jan;15(1):273-89 - PubMed
  20. Neuroimage. 2012 Sep;62(3):1769-79 - PubMed
  21. Neuroimage. 2010 Apr 15;50(3):935-49 - PubMed
  22. Brain Res. 2011 Mar 22;1380:218-28 - PubMed
  23. AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 - PubMed
  24. Neuron. 2006 Apr 20;50(2):329-39 - PubMed
  25. Magn Reson Med. 1995 Oct;34(4):537-41 - PubMed

Publication Types

Grant support