Display options
Share it on

ACS Omega. 2017 Apr 30;2(4):1302-1308. doi: 10.1021/acsomega.7b00053. Epub 2017 Apr 05.

Hamming Distance as a Concept in DNA Molecular Recognition.

ACS omega

Mina Mohammadi-Kambs, Kathrin Hölz, Mark M Somoza, Albrecht Ott

Affiliations

  1. Biological Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany.
  2. Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.

PMID: 28474009 PMCID: PMC5410656 DOI: 10.1021/acsomega.7b00053

Abstract

DNA microarrays constitute an in vitro example system of a highly crowded molecular recognition environment. Although they are widely applied in many biological applications, some of the basic mechanisms of the hybridization processes of DNA remain poorly understood. On a microarray, cross-hybridization arises from similarities of sequences that may introduce errors during the transmission of information. Experimentally, we determine an appropriate distance, called minimum Hamming distance, in which the sequences of a set differ. By applying an algorithm based on a graph-theoretical method, we find large orthogonal sets of sequences that are sufficiently different not to exhibit any cross-hybridization. To create such a set, we first derive an analytical solution for the number of sequences that include at least four guanines in a row for a given sequence length and eliminate them from the list of candidate sequences. We experimentally confirm the orthogonality of the largest possible set with a size of 23 for the length of 7. We anticipate our work to be a starting point toward the study of signal propagation in highly competitive environments, besides its obvious application in DNA high throughput experiments.

References

  1. BMC Genomics. 2008 Oct 17;9:491 - PubMed
  2. Biophys J. 2007 Feb 1;92(3):999-1004 - PubMed
  3. Nucleic Acids Res. 2006 May 17;34(9):e66 - PubMed
  4. Bioinformatics. 2007 Oct 1;23(19):2566-72 - PubMed
  5. Nucleic Acids Res. 1997 Dec 1;25(23):4748-57 - PubMed
  6. BMC Biophys. 2011 Dec 13;4:20 - PubMed
  7. J Nanobiotechnology. 2011 Dec 08;9:57 - PubMed
  8. J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):2014-8 - PubMed
  9. BMC Bioinformatics. 2008 Dec 01;9:509 - PubMed
  10. Biophys J. 2007 Jan 1;92(1):L10-2 - PubMed
  11. Nat Biotechnol. 2004 May;22(5):615-21 - PubMed
  12. Nat Mater. 2003 Nov;2(11):715-25 - PubMed
  13. BMC Genomics. 2007 Jun 12;8:164 - PubMed
  14. Biophys J. 2005 Aug;89(2):796-811 - PubMed
  15. Trends Biotechnol. 2012 Mar;30(3):147-54 - PubMed
  16. Biophys J. 2004 Feb;86(2):718-30 - PubMed
  17. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7575-80 - PubMed
  18. Biophys J. 2008 Mar 1;94(5):1726-34 - PubMed
  19. Nucleic Acids Res. 2013 Mar 1;41(5):2779-96 - PubMed
  20. J Nanobiotechnology. 2016 Mar 02;14 :14 - PubMed
  21. Biochim Biophys Acta. 2014 Jan;1840(1):41-52 - PubMed
  22. Nat Chem. 2012 Jan 22;4(3):208-14 - PubMed
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):040902 - PubMed
  24. BMC Biotechnol. 2003 Jun 11;3:6 - PubMed
  25. Methods Mol Biol. 2005;288:273-90 - PubMed
  26. Angew Chem Int Ed Engl. 2009;48(5):856-70 - PubMed
  27. Nucleic Acids Res. 2013 Feb 1;41(3):2034-46 - PubMed
  28. Nucleic Acids Res. 2005 Sep 02;33(15):4965-77 - PubMed
  29. Clin Chem. 2004 Dec;50(12):2254-62 - PubMed
  30. Nucleic Acids Res. 2003 Oct 1;31(19):5676-84 - PubMed
  31. Nucleic Acids Res. 2006 May 24;34(9):e70 - PubMed
  32. Nucleic Acids Res. 2001 Dec 15;29(24):5163-8 - PubMed
  33. Phys Rev Lett. 2009 May 29;102(21):218301 - PubMed

Publication Types