Display options
Share it on

Oncogenesis. 2017 Apr 17;6(4):e320. doi: 10.1038/oncsis.2017.5.

p16 controls epithelial cell growth and suppresses carcinogenesis through mechanisms that do not require RB1 function.

Oncogenesis

M Sen, N Akeno, A Reece, A L Miller, D S Simpson, K A Wikenheiser-Brokamp

Affiliations

  1. Division of Pathology & Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
  2. Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
  3. Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

PMID: 28414317 PMCID: PMC5520502 DOI: 10.1038/oncsis.2017.5

Abstract

The p16/RB1 tumor suppressor pathway is inactivated in the vast majority, if not all, human cancers. The current paradigm is that p16 and RB1 function in a linear pathway to suppress tumorigenesis; however p16 is preferentially lost in human cancers suggesting that p16 has critical tumor suppressive functions not mediated through RB1. Carcinomas arise from transformed epithelial cells and account for 80% of adult malignancies highlighting the need to understand p16/RB1 pathway function in organ epithelia. Lung cancer is the leading cause of cancer deaths and is associated with p16/RB1 pathway deregulation. We demonstrate that p16 is upregulated in the lung epithelium after Rb1 ablation in genetically engineered mouse models. In contrast to fibroblasts, loss of RB1 family proteins, p107 or p130, did not result in p16 induction, demonstrating that p16 suppression is a unique RB1 pocket protein function in the lung epithelium in vivo. p16 upregulation did not induce cellular senescence but rather promoted survival of RB1-deficient lung epithelial progenitor cells. Mechanistic studies show that p16 protects RB1-deficient cells from DNA damage. Consequently, additional loss of p16 led to genetic instability and increased susceptibility to cellular immortalization and transformation. Mice with combined RB1/p16-deficient lungs developed lung tumors including aggressive metastatic lung cancers. These studies identify p16 loss as a molecular event that causes genetic instability and directly demonstrate that p16 protects against DNA damage in the absence of RB1 function providing an explanation for why p16 is preferentially targeted in human cancers.

References

  1. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16175-80 - PubMed
  2. Oncotarget. 2017 Jan 17;8(3):4373-4386 - PubMed
  3. Nature. 2006 Sep 28;443(7110):453-7 - PubMed
  4. Cancer Res. 2008 Jun 1;68(11):4068-76 - PubMed
  5. Mol Oncol. 2010 Oct;4(5):397-403 - PubMed
  6. J Clin Oncol. 2006 Feb 10;24(5):736-47 - PubMed
  7. Cancer Cell. 2010 Apr 13;17(4):376-87 - PubMed
  8. Nat Rev Cancer. 2015 Jul;15(7):397-408 - PubMed
  9. Trends Genet. 1998 Jun;14(6):223-9 - PubMed
  10. Int J Cancer. 2012 Apr 15;130(8):1715-25 - PubMed
  11. Development. 2004 Sep;131(17):4299-310 - PubMed
  12. Hum Mutat. 2016 Sep;37(9):865-76 - PubMed
  13. Nature. 2001 Sep 6;413(6851):83-6 - PubMed
  14. Nature. 2006 Sep 28;443(7110):421-6 - PubMed
  15. Oncogene. 2015 Jan 29;34(5):589-99 - PubMed
  16. Cancer Cell. 2009 Apr 7;15(4):255-69 - PubMed
  17. Cell Cycle. 2012 Mar 1;11(5):1008-13 - PubMed
  18. Nature. 2006 Sep 28;443(7110):448-52 - PubMed
  19. Cancer Res. 2009 Nov 15;69(22):8733-41 - PubMed
  20. J Cell Biol. 1963 May;17:299-313 - PubMed
  21. Nat Rev Cancer. 2001 Dec;1(3):222-31 - PubMed
  22. Cancer Res. 2001 Apr 15;61(8):3419-24 - PubMed
  23. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4952-7 - PubMed
  24. Nature. 2015 Aug 6;524(7563):47-53 - PubMed
  25. J Clin Invest. 2013 Oct;123(10):4489-501 - PubMed
  26. Genes Dev. 2000 Dec 1;14(23):3051-64 - PubMed
  27. Genes Dev. 2010 Nov 15;24(22):2463-79 - PubMed
  28. Nature. 2014 Jul 31;511(7511):543-50 - PubMed
  29. Genes Dev. 1991 Dec;5(12B):2375-85 - PubMed
  30. Exp Biol Med (Maywood). 2006 Jul;231(7):1271-81 - PubMed
  31. Nat Rev Cancer. 2008 Sep;8(9):671-82 - PubMed
  32. Am J Pathol. 1998 Dec;153(6):1741-8 - PubMed
  33. Cancer Res. 2002 May 15;62(10):2761-5 - PubMed
  34. Genes Dev. 2007 Jan 1;21(1):49-54 - PubMed
  35. Ann N Y Acad Sci. 2012 Sep;1267:110-6 - PubMed
  36. Oncogene. 2005 Oct 20;24(46):6976-81 - PubMed
  37. Genes Dev. 2000 Dec 1;14(23):3037-50 - PubMed
  38. Cancer Cell. 2011 Jun 14;19(6):754-64 - PubMed
  39. Nature. 2012 Jan 11;481(7381):329-34 - PubMed
  40. J Thorac Dis. 2013 Oct;5 Suppl 5:S479-90 - PubMed
  41. Am J Physiol Lung Cell Mol Physiol. 2002 Aug;283(2):L256-64 - PubMed
  42. Nat Genet. 2013 Oct;45(10):1127-33 - PubMed
  43. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 - PubMed
  44. Nat Rev Cancer. 2014 Aug;14(8):535-46 - PubMed
  45. Chest. 2013 May;143(5 Suppl):e30S-9S - PubMed
  46. Nature. 2001 Sep 6;413(6851):86-91 - PubMed
  47. Cancer Cell. 2003 Sep;4(3):181-9 - PubMed
  48. Nature. 2012 Sep 27;489(7417):519-25 - PubMed
  49. Leukemia. 2010 Apr;24(4):679-86 - PubMed

Publication Types