Display options
Share it on

Transl Oncol. 2017 Jun;10(3):442-449. doi: 10.1016/j.tranon.2017.02.009. Epub 2017 Apr 25.

Utility of Genomic Analysis in Differentiating Synchronous and Metachronous Lung Adenocarcinomas from Primary Adenocarcinomas with Intrapulmonary Metastasis.

Translational oncology

Jad Saab, Hamid Zia, Susan Mathew, Michael Kluk, Navneet Narula, Helen Fernandes

Affiliations

  1. Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, New York, NY 10065.
  2. Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, New York, NY 10065. Electronic address: [email protected].

PMID: 28448960 PMCID: PMC5406583 DOI: 10.1016/j.tranon.2017.02.009

Abstract

Distinguishing synchronous and metachronous primary lung adenocarcinomas from adenocarcinomas with intrapulmonary metastasis is essential for optimal patient management. In this study, multiple lung adenocarcinomas occurring in the same patient were evaluated using comprehensive histopathologic evaluation supplemented with molecular analysis. The cohort included 18 patients with a total of 52 lung adenocarcinomas. Eleven patients had a new diagnosis of multiple adenocarcinomas in the same lobe (n=5) or different lobe (n=6). Seven patients had a history of lung cancer and developed multiple new tumors. The final diagnosis was made in resection specimens (n=49), fine needle aspiration (n=2), and biopsy (n=1). Adenocarcinomas were non-mucinous, and histopathologic comparison of tumors was performed. All tumors save for one were subjected to ALK gene rearrangement testing and targeted Next Generation Sequencing (NGS). Using clinical, radiologic, and morphologic features, a confident conclusion favoring synchronous/metachronous or metastatic disease was made in 65% of patients. Cases that proved challenging included ones with more than three tumors showing overlapping growth patterns and lacking a predominant lepidic component. Genomic signatures unique to each tumor were helpful in determining the relationship of multiple carcinomas in 72% of patients. Collectively, morphologic and genomic data proved to be of greater value and achieved a conclusive diagnosis in 94% of patients. Assessment of the genomic profiles of multiple lung adenocarcinomas complements the histological findings, enabling a more comprehensive assessment of synchronous, metachronous, and metastatic lesions in most patients, thereby improving staging accuracy. Targeted NGS can identify genetic alterations with therapeutic implications.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

References

  1. J Cardiovasc Surg (Torino). 2003 Oct;44(5):661-5 - PubMed
  2. Ann Thorac Surg. 2004 Oct;78(4):1194-9 - PubMed
  3. Clin Chest Med. 2011 Dec;32(4):669-92 - PubMed
  4. J Clin Oncol. 2014 Dec 20;32(36):4050-8 - PubMed
  5. Cancer Res. 2009 Nov 1;69(21):8341-8 - PubMed
  6. Am J Surg Pathol. 2008 Jun;32(6):810-27 - PubMed
  7. Ann Thorac Surg. 2003 Oct;76(4):1001-7; discussion 1007-8 - PubMed
  8. Lung Cancer. 2001 Nov;34(2):169-75 - PubMed
  9. J Thorac Cardiovasc Surg. 1975 Oct;70(4):606-12 - PubMed
  10. Diagn Mol Pathol. 1997 Aug;6(4):179-84 - PubMed
  11. Ann Thorac Surg. 2010 Aug;90(2):388-96 - PubMed
  12. Clin Cancer Res. 2007 Jan 1;13(1):52-8 - PubMed
  13. Clin Cancer Res. 2004 Nov 1;10(21):7311-7 - PubMed
  14. Lung Cancer. 2014 Oct;86(1):22-8 - PubMed
  15. Am J Surg Pathol. 2009 Dec;33(12):1752-64 - PubMed
  16. J Thorac Oncol. 2015 Sep;10 (9):1243-1260 - PubMed
  17. Clin Chest Med. 2002 Mar;23(1):65-81, viii - PubMed
  18. Clin Cancer Res. 2008 Sep 15;14 (18):5731-4 - PubMed
  19. Ann Surg. 1995 Dec;222(6):700-10 - PubMed
  20. Ann Diagn Pathol. 2001 Dec;5(6):321-9 - PubMed
  21. Thorax. 1993 Apr;48(4):344-6 - PubMed
  22. Am J Clin Pathol. 2009 May;131(5):694-700 - PubMed
  23. Chest. 2010 Jan;137(1):46-52 - PubMed
  24. J Thorac Cardiovasc Surg. 1985 Mar;89(3):378-85 - PubMed
  25. Am J Surg Pathol. 2005 Jul;29(7):897-902 - PubMed
  26. Mod Pathol. 2010 Feb;23 (2):159-68 - PubMed
  27. J Natl Cancer Inst. 2009 Apr 15;101(8):560-70 - PubMed
  28. J Thorac Cardiovasc Surg. 1995 Jan;109(1):120-9 - PubMed
  29. Mod Pathol. 2016 Jul;29(7):735-42 - PubMed
  30. Ann Thorac Surg. 1997 Sep;64(3):809-13 - PubMed
  31. J Thorac Cardiovasc Surg. 1990 May;99(5):769-77; discussion 777-8 - PubMed
  32. Nature. 2008 Oct 23;455(7216):1069-75 - PubMed
  33. Thorac Cancer. 2015 Mar;6(2):159-65 - PubMed
  34. CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29 - PubMed
  35. Mod Pathol. 2011 May;24(5):653-64 - PubMed
  36. Chest. 2013 May;143(5 Suppl):e369S-e399S - PubMed
  37. Cancer. 1999 Apr 15;85(8):1734-9 - PubMed
  38. Clin Cancer Res. 2009 Aug 15;15(16):5184-90 - PubMed
  39. Cancer Sci. 2007 Jul;98(7):1006-13 - PubMed
  40. Eur J Cardiothorac Surg. 2002 Mar;21(3):527-33 - PubMed
  41. Am J Surg Pathol. 2010 Aug;34(8):1155-62 - PubMed
  42. Cancer. 2002 Jan 1;94(1):188-96 - PubMed
  43. Eur J Cardiothorac Surg. 1995;9(5):231-6 - PubMed
  44. Ann Thorac Surg. 2014 Nov;98(5):1755-60; discussion 1760-1 - PubMed
  45. Nat Med. 2008 Aug;14(8):822-7 - PubMed
  46. Ann Thorac Surg. 1984 Oct;38(4):331-8 - PubMed
  47. Am J Surg. 1996 May;171(5):521-4 - PubMed
  48. J Thorac Cardiovasc Surg. 2007 Sep;134(3):630-7 - PubMed
  49. Lung Cancer. 1996 Nov;15(3):281-95 - PubMed
  50. Radiology. 1990 Jul;176(1):185-90 - PubMed
  51. Br J Cancer. 1999 Mar;79(9-10):1549-52 - PubMed

Publication Types