Display options
Share it on

J Nanopart Res. 2017;19(4):152. doi: 10.1007/s11051-017-3840-8. Epub 2017 Apr 19.

Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine.

Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology

Adrian A Walsh

Affiliations

  1. Translational Medicine, Liverpool University, Ashton Street, Liverpool, L69 3GE UK.
  2. Nano Biosols Ltd, Liverpool Science Park, 131 Mount Pleasant, Liverpool, L3 5TF UK.

PMID: 28479864 PMCID: PMC5397429 DOI: 10.1007/s11051-017-3840-8

Abstract

Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

Keywords: Chemisorption; Gold nanoparticles; Iodine-125; Nanomedicine; Quantitation; Radioactive labelling

References

  1. Chem Soc Rev. 2012 Apr 7;41(7):2849-66 - PubMed
  2. Nano Lett. 2009 Mar;9(3):1080-4 - PubMed
  3. Chem Soc Rev. 2012 Apr 7;41(7):2885-911 - PubMed
  4. Int J Nanomedicine. 2010 Sep 07;5:653-9 - PubMed
  5. Phys Med Biol. 2004 Sep 21;49(18):N309-15 - PubMed
  6. Chem Soc Rev. 2012 Apr 7;41(7):2740-79 - PubMed
  7. Br J Radiol. 2012 Feb;85(1010):101-13 - PubMed
  8. J Immunol Methods. 1983 Aug 26;62(2):175-84 - PubMed
  9. J Histochem Cytochem. 1978 Dec;26(12):1074-81 - PubMed
  10. Angew Chem Int Ed Engl. 2003 Jan 27;42(4):449-52 - PubMed
  11. Anal Biochem. 1985 Mar;145(2):315-21 - PubMed
  12. J Cell Biol. 1981 Aug;90(2):533-6 - PubMed
  13. Nat Biotechnol. 2004 Jul;22(7):883-7 - PubMed
  14. Histochemistry. 1979 Apr 12;60(3):317-20 - PubMed
  15. Adv Drug Deliv Rev. 2010 Mar 8;62(3):346-61 - PubMed
  16. Immunochemistry. 1971 Nov;8(11):1081-3 - PubMed
  17. Appl Biochem Biotechnol. 2012 Mar;166(6):1533-51 - PubMed
  18. Eur J Cell Biol. 1985 Jul;38(1):87-93 - PubMed
  19. Br J Radiol. 2006 Mar;79(939):248-53 - PubMed
  20. Nanomedicine. 2010 Apr;6(2):201-9 - PubMed
  21. Nanotechnology. 2009 Sep 30;20(39):395102 - PubMed
  22. Curr Opin Biotechnol. 2003 Feb;14(1):13-22 - PubMed
  23. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13549-54 - PubMed
  24. Anal Biochem. 2004 Jul 1;330(1):145-55 - PubMed
  25. Nanotechnology. 2011 Apr 1;22(13):135102 - PubMed
  26. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Jan-Feb;4(1):42-51 - PubMed
  27. Nanomedicine (Lond). 2009 Apr;4(3):249-52 - PubMed
  28. J Am Chem Soc. 2008 Aug 13;130(32):10643-7 - PubMed
  29. J Biomed Opt. 2011 May;16(5):051307 - PubMed
  30. J Histochem Cytochem. 1988 Apr;36(4):401-7 - PubMed
  31. Nanoscale Res Lett. 2015 Apr 02;10:160 - PubMed
  32. Clin Chem Lab Med. 2011 Oct 06;50(2):193-209 - PubMed
  33. J Am Chem Soc. 2004 May 19;126(19):5932-3 - PubMed
  34. J Histochem Cytochem. 1977 Apr;25(4):295-305 - PubMed
  35. J Cell Sci. 1987 May;87 ( Pt 4):495-506 - PubMed
  36. Reprod Toxicol. 2008 Oct;26(2):130-7 - PubMed
  37. Anal Chem. 2003 Nov 1;75(21):5936-43 - PubMed
  38. Diagn Microbiol Infect Dis. 1998 Apr;30(4):257-60 - PubMed
  39. Anal Bioanal Chem. 2008 Jan;390(1):249-52 - PubMed
  40. Nano Today. 2009 Oct 1;4(5):399-413 - PubMed
  41. Chem Rev. 2016 Mar 9;116(5):2826-85 - PubMed
  42. Theranostics. 2015 May 23;5(9):946-60 - PubMed
  43. Clin Diagn Lab Immunol. 1998 May;5(3):407-9 - PubMed
  44. Theranostics. 2013;3(3):167-80 - PubMed
  45. Methods Mol Biol. 2011;697:137-43 - PubMed
  46. ACS Nano. 2011 Nov 22;5(11):8967-73 - PubMed
  47. Chem Soc Rev. 2014 Nov 7;43(21):7267-78 - PubMed

Publication Types