Display options
Share it on

Mol Ther Methods Clin Dev. 2017 Mar 08;5:43-50. doi: 10.1016/j.omtm.2017.03.001. eCollection 2017 Jun 16.

A One-Step PCR-Based Assay to Evaluate the Efficiency and Precision of Genomic DNA-Editing Tools.

Molecular therapy. Methods & clinical development

Diego Germini, Yara Bou Saada, Tatiana Tsfasman, Kristina Osina, Chloé Robin, Nikolay Lomov, Mikhail Rubtsov, Nikolajs Sjakste, Mar Lipinski, Yegor Vassetzky

Affiliations

  1. UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
  2. LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.
  3. Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia.
  4. University of Latvia, 1586 Riga, Latvia.
  5. M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
  6. Department of Biochemistry and Strategic Management Department, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia.

PMID: 28480303 PMCID: PMC5415314 DOI: 10.1016/j.omtm.2017.03.001

Abstract

Despite rapid progress, many problems and limitations persist and limit the applicability of gene-editing techniques. Making use of meganucleases, TALENs, or CRISPR/Cas9-based tools requires an initial step of pre-screening to determine the efficiency and specificity of the designed tools. This step remains time consuming and material consuming. Here we propose a simple, cheap, reliable, time-saving, and highly sensitive method to evaluate a given gene-editing tool based on its capacity to induce chromosomal translocations when combined with a reference engineered nuclease. In the proposed technique, designated engineered nuclease-induced translocations (ENIT), a plasmid coding for the DNA-editing tool to be tested is co-transfected into carefully chosen target cells along with that for an engineered nuclease of known specificity and efficiency. If the new enzyme efficiently cuts within the desired region, then specific chromosomal translocations will be generated between the two targeted genomic regions and be readily detectable by a one-step PCR or qPCR assay. The PCR product thus obtained can be directly sequenced, thereby determining the exact position of the double-strand breaks induced by the gene-editing tools. As a proof of concept, ENIT was successfully tested in different cell types and with different meganucleases, TALENs, and CRISPR/Cas9-based editing tools.

Keywords: CRISPR/Cas9; PCR; TALEN; assay; translocations

References

  1. Nat Biotechnol. 2014 Mar;32(3):279-84 - PubMed
  2. Trends Biotechnol. 2013 Jul;31(7):397-405 - PubMed
  3. Science. 2014 Nov 28;346(6213):1258096 - PubMed
  4. Genome Res. 1997 Nov;7(11):1094-103 - PubMed
  5. Front Oncol. 2013 Dec 11;3:302 - PubMed
  6. Genes Dev. 2014 Sep 1;28(17):1859-72 - PubMed
  7. Expert Opin Drug Discov. 2007 Apr;2(4):571-89 - PubMed
  8. Nature. 2000 Jun 8;405(6787):697-700 - PubMed
  9. Genome Res. 2013 Jul;23(7):1182-93 - PubMed
  10. G3 (Bethesda). 2013 Aug 07;3(8):1213-24 - PubMed
  11. Genetics. 2010 Oct;186(2):757-61 - PubMed
  12. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10620-5 - PubMed
  13. Sci Rep. 2015 Oct 20;5:15577 - PubMed
  14. Mol Plant. 2013 Nov;6(6):1975-83 - PubMed
  15. Am J Pathol. 2000 Apr;156(4):1189-96 - PubMed
  16. Genome Res. 1997 Oct;7(10):996-1005 - PubMed
  17. Mol Cell Biol. 2003 Dec;23(24):9338-48 - PubMed
  18. Biotechniques. 2004 Apr;36(4):702-7 - PubMed
  19. Nat Biotechnol. 2016 Sep 08;34(9):933-941 - PubMed
  20. Biochemistry (Mosc). 2016 Jul;81(7):678-90 - PubMed
  21. Nat Rev Genet. 2010 Dec;11(12):819-29 - PubMed
  22. Sci Rep. 2016 Feb 02;6:20064 - PubMed
  23. Curr Protoc Hum Genet. 2006 Feb;Chapter 7:Unit7.10 - PubMed
  24. G3 (Bethesda). 2015 Jan 07;5(3):407-15 - PubMed
  25. Hum Mutat. 1993;2(5):338-46 - PubMed
  26. Mol Cancer. 2014 Nov 18;13:249 - PubMed

Publication Types