Display options
Share it on

Mol Ther Methods Clin Dev. 2017 Apr 14;5:116-129. doi: 10.1016/j.omtm.2017.04.001. eCollection 2017 Jun 16.

STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation.

Molecular therapy. Methods & clinical development

Davood Sabour, Sureshkumar Perumal Srinivasan, Susan Rohani, Vilas Wagh, John Antonydas Gaspar, Darius Panek, Mostafa Abootorabi Ardestani, Michael Xavier Doss, Nicole Riet, Hinrich Abken, Jürgen Hescheler, Symeon Papadopoulos, Agapios Sachinidis

Affiliations

  1. Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Strasse 39, 50931 Cologne, Germany.
  2. Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, Robert-Koch-Strasse 39, 50931 Cologne, Germany.
  3. Department I for Internal Medicine, Center for Molecular Medicine Cologne, Robert-Koch-Strasse 21, University of Cologne, and University Hospital Cologne, 50931 Cologne, Germany.

PMID: 28480311 PMCID: PMC5415327 DOI: 10.1016/j.omtm.2017.04.001

Abstract

The role of striatin interacting protein 2 (Strip2) in differentiation of embryonic stem cells (ESCs) is still under debate. Strip2-silenced murine (KD) ESCs were differentiated for 4, 8, 12, and 16 days. We show that Strip2 is distributed in the perinucleus or nuclei of wild-type (WT) undifferentiated ESCs, but is localized in high-density nuclear bodies in differentiated cells. CellNet analysis of microarray gene expression data for the KD and scrambled control (SCR) embryoid bodies (EBs), as well as immunostainings of key pluripotent factors, demonstrated that differentiation of KD ESCs is repressed. This occurs even in 16-day-old EBs, which possessed a high tumorigenic potential. Correlated with very high expression levels of epigenetic regulator genes,

Keywords: Strip2; embryonic stem cells; epigenetic factors; microRNAs; ncRNAs; pluripotency; shRNA gene silencing; stem cell differentiation; striatin interacting protein 2

References

  1. Nat Cell Biol. 2015 Jan;17(1):68-80 - PubMed
  2. Int J Biochem Cell Biol. 2014 Feb;47:118-48 - PubMed
  3. Circ Res. 2014 Jul 7;115(2):311-24 - PubMed
  4. Front Biosci (Elite Ed). 2012 Jan 01;4:156-68 - PubMed
  5. Blood. 2016 Sep 29;128(13):1711-22 - PubMed
  6. Genome Biol. 2003;4(10):R70 - PubMed
  7. Stem Cells. 2001;19(5):419-24 - PubMed
  8. Int J Mol Sci. 2013 Jul 11;14(7):14346-73 - PubMed
  9. Bioinformatics. 2003 Jan 22;19(2):185-93 - PubMed
  10. Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):256-63 - PubMed
  11. Trends Genet. 2011 Aug;27(8):295-306 - PubMed
  12. Cancer Biol Ther. 2012 May;13(7):542-52 - PubMed
  13. Cell Stem Cell. 2014 Dec 4;15(6):735-49 - PubMed
  14. Cell Death Dis. 2015 May 07;6:e1756 - PubMed
  15. Mol Cell Proteomics. 2009 Jan;8(1):157-71 - PubMed
  16. Cell Death Dis. 2014 Jul 10;5:e1320 - PubMed
  17. RNA. 2012 Feb;18(2):253-64 - PubMed
  18. Genes Cells. 2007 Apr;12(4):447-60 - PubMed
  19. Genome Biol. 2003;4(5):P3 - PubMed
  20. Cell Stem Cell. 2010 Jul 2;7(1):36-41 - PubMed
  21. FEBS Lett. 2015 Apr 2;589(8):941-50 - PubMed
  22. Nat Commun. 2016 Apr 28;7:11317 - PubMed
  23. Cell. 2014 Aug 14;158(4):903-915 - PubMed
  24. Nat Rev Mol Cell Biol. 2006 Jul;7(7):540-6 - PubMed
  25. BMC Biol. 2011 Aug 11;9:54 - PubMed
  26. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 - PubMed
  27. Stem Cells Dev. 2011 May;20(5):821-30 - PubMed
  28. Cell. 2011 Mar 18;144(6):940-54 - PubMed
  29. Thromb Haemost. 2005 Oct;94(4):719-27 - PubMed
  30. Cold Spring Harb Perspect Biol. 2015 Jul 01;7(7):a008144 - PubMed
  31. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  32. Oncogene. 2016 Sep 1;35(35):4549-57 - PubMed
  33. Development. 2014 Jun;141(12):2376-90 - PubMed

Publication Types