Display options
Share it on

Biophys Rev. 2010 Feb;2(1):13-20. doi: 10.1007/s12551-009-0024-5. Epub 2009 Dec 18.

The physics of flagellar motion of E. coli during chemotaxis.

Biophysical reviews

M Siva Kumar, P Philominathan

Affiliations

  1. Indian School Muscat, Muscat, Oman. [email protected].
  2. AVVM SriPushpam College, Tanjore, India.

PMID: 28509944 PMCID: PMC5418374 DOI: 10.1007/s12551-009-0024-5

Abstract

Flagellar motion has been an active area of study right from the discovery of bacterial chemotaxis in 1882. During chemotaxis, E. coli moves with the help of helical flagella in an aquatic environment. Helical flagella are rotated in clockwise or counterclockwise direction using reversible flagellar motors situated at the base of each flagellum. The swimming of E. coli is characterized by a low Reynolds number that is unique and time reversible. The random motion of E. coli is influenced by the viscosity of the fluid and the Brownian motion of molecules of fluid, chemoattractants, and chemorepellants. This paper reviews the literature about the physics involved in the propulsion mechanism of E. coli. Starting from the resistive-force theory, various theories on flagellar hydrodynamics are critically reviewed. Expressions for drag force, elastic force and velocity of flagellar elements are derived. By taking the elastic nature of flagella into account, linear and nonlinear equations of motions are derived and their solutions are presented.

Keywords: Bacterial chemotaxis; Equations of flagellar motion; Flagellar hydrodynamics; Low Reynolds number flow

References

  1. J Bacteriol. 1983 Jul;155(1):228-37 - PubMed
  2. Nature. 1973 Oct 19;245(5425):380-2 - PubMed
  3. Phys Rev Lett. 2007 Feb 9;98(6):068105 - PubMed
  4. J Biomech. 1971 Jan;4(1):73-83 - PubMed
  5. Biophys J. 2000 Jan;78(1):513-9 - PubMed
  6. J Theor Biol. 1995 Dec 21;177(4):325-40 - PubMed
  7. Cell. 1983 Jan;32(1):109-17 - PubMed
  8. Proc Natl Acad Sci U S A. 1977 Jan;74(1):221-5 - PubMed
  9. Nature. 1974 May 3;249(452):74-7 - PubMed
  10. J Bacteriol. 2000 May;182(10):2793-801 - PubMed
  11. J Mol Biol. 1990 Feb 5;211(3):551-63 - PubMed
  12. Phys Rev Lett. 2005 Jun 24;94(24):248101 - PubMed
  13. Bull Math Biol. 2005 Jan;67(1):137-68 - PubMed
  14. Nature. 1974 May 3;249(452):73-4 - PubMed
  15. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10040-5 - PubMed
  16. Biophys J. 2006 Nov 15;91(10):3640-52 - PubMed
  17. Biophys J. 1993 Aug;65(2):755-78 - PubMed
  18. Phys Rev Lett. 2000 Feb 14;84(7):1623-6 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):040903 - PubMed
  20. Annu Rev Biophys Bioeng. 1975;4(00):119-36 - PubMed
  21. Biophys J. 1976 Feb;16(2 Pt 1):151-70 - PubMed
  22. Phys Rev Lett. 2000 Nov 27;85(22):4827-30 - PubMed
  23. Biophys J. 1977 Nov;20(2):193-219 - PubMed
  24. Adv Microb Physiol. 1991;32:109-72 - PubMed
  25. Annu Rev Microbiol. 1980;34:69-108 - PubMed
  26. Biophys J. 1998 Feb;74(2 Pt 1):1043-60 - PubMed
  27. J Bacteriol. 1974 Feb;117(2):696-701 - PubMed
  28. J Mol Biol. 1977 May 5;112(1):1-30 - PubMed
  29. J Pathol Bacteriol. 1959 Apr;77(2):565-74 - PubMed
  30. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509-12 - PubMed
  31. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15481-5 - PubMed
  32. Science. 1966 Aug 12;153(3737):708-16 - PubMed
  33. Appl Microbiol. 1969 Apr;17(4):584-8 - PubMed
  34. Nature. 1972 Oct 27;239(5374):500-4 - PubMed
  35. Cell. 1998 Apr 3;93(1):17-20 - PubMed
  36. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061910 - PubMed

Publication Types