Display options
Share it on

Biophys Rev. 2011 Dec;3(4):193-197. doi: 10.1007/s12551-011-0058-3. Epub 2011 Oct 20.

A novel spliceosome-mediated trans-splicing can change our view on genome complexity of the divergent eukaryote Giardia intestinalis.

Biophysical reviews

Ryoma Kamikawa, Yuji Inagaki, Tetsuo Hashimoto

Affiliations

  1. Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan. [email protected].
  2. Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan.

PMID: 28510047 PMCID: PMC5425688 DOI: 10.1007/s12551-011-0058-3

Abstract

Although spliceosomal introns are an abundant landmark in eukaryotic genomes, the nuclear genome of the divergent eukaryote Giardia intestinalis, the causative agent of giardiasis, has been considered as "intron-poor" with only five canonical (cis-spliced) introns. However, three research groups (including ours) have independently reported a novel class of spliceosomal introns in the G. intestinalis genome. Three protein-coding genes are split into pieces in the G. intestinalis genome, and each of the partial coding regions was independently transcribed into polyadenylated premature mRNAs (pre-mRNAs). The two pre-mRNAs directly interact with each other by an intermolecular-stem structure formed between their non-coding portions, and are then processed into mature mRNAs by spliceosome-mediated trans-splicing. Here, we summarize the recently published works on split introns ("splintrons") in the G. intestinalis genome, and then provide our speculation on the functional property of the Giardia spliceosomes based on the putative ratio of splintrons to canonical introns. Finally, we discuss a scenario for the transition from typical GT-AG boundaries to non-typical AT-AC boundaries in a particular splintron of Giardia.

Keywords: Dynein; Giardia intestinalis; Heat shock protein 90; RNA maturation; Spliceosomal introns; Splintrons; Trans-splicing; cis-splicing

References

  1. EMBO J. 1997 Feb 17;16(4):779-92 - PubMed
  2. J Biol Chem. 2011 Mar 4;286(9):7116-22 - PubMed
  3. Commun Integr Biol. 2011 Jul;4(4):454-6 - PubMed
  4. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):229-34 - PubMed
  5. Nature. 2006 Mar 2;440(7080):41-5 - PubMed
  6. Curr Biol. 2011 Feb 22;21(4):311-5 - PubMed
  7. Annu Rev Genet. 2004;38:1-35 - PubMed
  8. Cold Spring Harb Perspect Biol. 2011 Aug 01;3(8):a003616 - PubMed
  9. Nature. 1993 Jul 22;364(6435):289-90 - PubMed
  10. Nature. 2006 Mar 30;440(7084):623-30 - PubMed
  11. Curr Biol. 2011 Feb 22;21(4):R162-3 - PubMed
  12. Nature. 2002 Jun 6;417(6889):667-70 - PubMed
  13. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3701-5 - PubMed
  14. Mol Biol Evol. 2012 Jan;29(1):43-9 - PubMed
  15. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6860-5 - PubMed
  16. Nature. 2003 Nov 13;426(6963):172-6 - PubMed
  17. Mol Cell. 2003 Jul;12(1):5-14 - PubMed
  18. Science. 2007 Sep 28;317(5846):1921-6 - PubMed
  19. Clin Microbiol Rev. 2001 Jul;14(3):447-75 - PubMed
  20. Nature. 2008 Sep 25;455(7212):491-6 - PubMed
  21. Eukaryot Cell. 2010 Aug;9(8):1159-70 - PubMed
  22. Mol Biol Evol. 2005 Apr;22(4):1053-66 - PubMed

Publication Types