Display options
Share it on

Biophys Rev. 2017 Jun;9(3):225-237. doi: 10.1007/s12551-017-0263-9. Epub 2017 Apr 10.

Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes.

Biophysical reviews

Nazha Hamdani, Melissa Herwig, Wolfgang A Linke

Affiliations

  1. Department of Cardiovascular Physiology, Ruhr University Bochum, MA 03/56, 44780, Bochum, Germany.
  2. Department of Cardiovascular Physiology, Ruhr University Bochum, MA 03/56, 44780, Bochum, Germany. [email protected].
  3. Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Göttingen, Göttingen, Germany. [email protected].
  4. Cardiac Mechanotransduction Group, Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany. [email protected].

PMID: 28510118 PMCID: PMC5498327 DOI: 10.1007/s12551-017-0263-9

Abstract

Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.

Keywords: Cardiomyocytes; Diastolic function; Heart failure; Muscle cell mechanics; Posttranslational modification; Stiffness

References

  1. J Gen Physiol. 2005 Mar;125(3):257-71 - PubMed
  2. Nature. 2002 Aug 29;418(6901):998-1002 - PubMed
  3. Development. 2016 Dec 15;143(24):4713-4722 - PubMed
  4. Biophys J. 1994 Aug;67(2):782-92 - PubMed
  5. Circ Res. 2000 Jun 9;86(11):1114-21 - PubMed
  6. J Biol Chem. 2008 Oct 3;283(40):26829-33 - PubMed
  7. J Cell Biol. 2014 Jan 20;204(2):187-202 - PubMed
  8. J Mol Cell Cardiol. 2010 Sep;49(3):449-58 - PubMed
  9. Circ Res. 2009 Sep 25;105(7):631-8, 17 p following 638 - PubMed
  10. FASEB J. 2016 May;30(5):1849-64 - PubMed
  11. Cell Rep. 2016 Feb 16;14 (6):1339-1347 - PubMed
  12. Cell. 2014 Mar 13;156(6):1235-46 - PubMed
  13. Cardiovasc Res. 2013 Mar 1;97(3):464-71 - PubMed
  14. Eur J Heart Fail. 2016 Apr;18(4):362-71 - PubMed
  15. Basic Res Cardiol. 2014;109 (6):449 - PubMed
  16. Nat Commun. 2016 Aug 22;7:12490 - PubMed
  17. J Mol Biol. 1996 Aug 9;261(1):62-71 - PubMed
  18. Cardiovasc Res. 2014 Dec 1;104(3):423-31 - PubMed
  19. J Biol Chem. 2009 Oct 2;284(40):27674-86 - PubMed
  20. Circ Res. 2009 Mar 27;104(6):780-6 - PubMed
  21. J Biol Chem. 2002 Mar 22;277(12):9806-11 - PubMed
  22. Circ Res. 2002 Jun 14;90(11):1181-8 - PubMed
  23. Circulation. 2006 Apr 25;113(16):1966-73 - PubMed
  24. Antioxid Redox Signal. 2015 Nov 1;23 (13):1017-34 - PubMed
  25. Arch Biochem Biophys. 2014 Jun 15;552-553:100-7 - PubMed
  26. Elife. 2015 Oct 16;4:e09406 - PubMed
  27. Biophys Rev. 2015 Sep;7(3):321-341 - PubMed
  28. Circ Res. 2001 Nov 23;89(11):1065-72 - PubMed
  29. J Mol Cell Cardiol. 2013 Jan;54:90-7 - PubMed
  30. Circ Res. 2011 Sep 30;109(8):858-66 - PubMed
  31. J Mol Cell Cardiol. 2015 Feb;79:104-14 - PubMed
  32. Circ Res. 2016 Oct 14;119(9):1017-1029 - PubMed
  33. Am J Physiol Heart Circ Physiol. 2012 Feb 1;302(3):H697-708 - PubMed
  34. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052-7 - PubMed
  35. Circulation. 2011 Sep 6;124(10 ):1151-9 - PubMed
  36. J Struct Biol. 2006 Aug;155(2):263-72 - PubMed
  37. Circ Res. 2009 Jan 2;104(1):87-94 - PubMed
  38. J Am Heart Assoc. 2014 Jun 03;3(3):e000716 - PubMed
  39. Circ Res. 2001 May 25;88(10 ):1028-35 - PubMed
  40. Circulation. 2015 Apr 7;131(14):1247-59 - PubMed
  41. J Cell Sci. 1995 Sep;108 ( Pt 9):3029-37 - PubMed
  42. Cell. 2010 Dec 23;143(7):1174-89 - PubMed
  43. Anat Rec (Hoboken). 2014 Sep;297(9):1615-29 - PubMed
  44. Cell Rep. 2014 Jul 24;8(2):470-6 - PubMed
  45. J Mol Biol. 2003 Nov 7;333(5):951-64 - PubMed
  46. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2306-11 - PubMed
  47. J Clin Invest. 2008 Dec;118(12):3870-80 - PubMed
  48. Nat Genet. 2017 Jan;49(1):46-53 - PubMed
  49. Development. 2008 Dec;135(23):3881-9 - PubMed
  50. Sci Rep. 2016 Apr 15;6:24492 - PubMed
  51. Nat Commun. 2012 Jun 06;3:876 - PubMed
  52. J Biol Chem. 2012 Aug 24;287(35):29273-84 - PubMed
  53. J Muscle Res Cell Motil. 2006;27(5-7):435-44 - PubMed
  54. Nat Med. 2016 Dec;22(12 ):1428-1438 - PubMed
  55. Circ Heart Fail. 2016 Oct;9(10 ): - PubMed
  56. Circ Heart Fail. 2013 Nov;6(6):1239-49 - PubMed
  57. Biophys J. 2009 Aug 5;97(3):825-34 - PubMed
  58. J Physiol. 2003 Nov 15;553(Pt 1):147-54 - PubMed
  59. Circulation. 2014 May 13;129(19):1924-36 - PubMed
  60. J Cell Biol. 1999 Aug 9;146(3):631-44 - PubMed
  61. Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1671-82 - PubMed
  62. Circulation. 2013 Oct 29;128(18):2016-25, 1-10 - PubMed
  63. EMBO J. 1993 Oct;12(10):3827-34 - PubMed
  64. Nature. 1998 Oct 29;395(6705):863-9 - PubMed
  65. J Cell Sci. 1996 Nov;109 ( Pt 11):2747-54 - PubMed
  66. Circ Res. 2008 Dec 5;103(12):1354-8 - PubMed
  67. Circ Res. 2014 Mar 14;114(6):1052-68 - PubMed
  68. J Muscle Res Cell Motil. 2003;24(2-3):175-89 - PubMed
  69. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2011-6 - PubMed
  70. Pflugers Arch. 2014 Jun;466(6):1037-53 - PubMed
  71. J Gen Physiol. 2008 Mar;131(3):275-83 - PubMed
  72. Biophys J. 2015 Dec 15;109 (12 ):2592-601 - PubMed
  73. Cardiovasc Res. 2014 Jan 1;101(1):108-19 - PubMed
  74. J Gen Physiol. 2005 Nov;126(5):461-80 - PubMed
  75. Circ Res. 1995 Oct;77(4):856-61 - PubMed
  76. Cardiovasc Res. 2008 Mar 1;77(4):649-58 - PubMed
  77. J Mol Cell Cardiol. 2010 May;48(5):972-8 - PubMed
  78. Trends Biochem Sci. 2005 Jun;30(6):286-90 - PubMed
  79. Cardiovasc Res. 2008 Mar 1;77(4):637-48 - PubMed
  80. Circulation. 2002 Sep 10;106(11):1333-41 - PubMed
  81. Am J Physiol Cell Physiol. 2016 Jan 15;310(2):C127-35 - PubMed
  82. Cardiovasc Res. 2013 Sep 1;99(4):648-56 - PubMed
  83. Science. 2005 Jun 10;308(5728):1599-603 - PubMed
  84. Cardiovasc Res. 2016 Oct;112(1):452-63 - PubMed
  85. Circulation. 2001 Oct 2;104(14):1639-45 - PubMed
  86. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90 - PubMed
  87. J Muscle Res Cell Motil. 2015 Feb;36(1):25-36 - PubMed
  88. Circ Res. 2013 Feb 15;112(4):664-74 - PubMed
  89. J Am Coll Cardiol. 2011 Jan 18;57(3):300-9 - PubMed
  90. Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 - PubMed
  91. J Muscle Res Cell Motil. 2008;29(6-8):189-201 - PubMed
  92. Science. 2016 Apr 22;352(6284):aaf0659 - PubMed
  93. J Mol Cell Cardiol. 2010 May;48(5):910-6 - PubMed
  94. J Biol Chem. 2004 Feb 27;279(9):7917-24 - PubMed
  95. N Engl J Med. 2004 May 6;350(19):1953-9 - PubMed
  96. Front Physiol. 2014 Nov 20;5:449 - PubMed
  97. Open Biol. 2014 May;4(5):140041 - PubMed
  98. Int J Cardiol. 2016 Jan 15;203:1061-6 - PubMed
  99. Circulation. 2011 Dec 20;124(25):2882-91 - PubMed

Publication Types