Display options
Share it on

Biophys Rev. 2013 Jun;5(2):173-185. doi: 10.1007/s12551-013-0103-5. Epub 2013 Feb 14.

A historical perspective of the biophysics of the thrombin-heparin system: an example of nonspecific binding and the consequent parking problem in action.

Biophysical reviews

Donald J Winzor

Affiliations

  1. School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4072, Australia. [email protected].

PMID: 28510155 PMCID: PMC5425718 DOI: 10.1007/s12551-013-0103-5

Abstract

Difficulties are encountered in the thermodynamic characterization of interactions between a protein ligand and a linear acceptor, such as a polynucleotide or a polysaccharide, because of the involvement of more than one unit of the polymer chain in each attachment of a protein molecule. Complications arise from the fact that random attachment of ligand to the polymer chain, each unit of which is a potential binding site, initially leads to suboptimal location of protein molecules along the polymer chain-a situation that has to be rectified before the attainment of thermodynamic equilibrium can be realized. Kinetic as well as thermodynamic consequences of such nonspecific binding, termed the parking problem, therefore need to be considered in any quantitative characterization of the interaction between a large ligand and a linear polymer acceptor chain. Results for the thrombin-heparin interaction have been used to illustrate a thermodynamic characterization of nonspecific binding that takes into account these consequences of the parking problem.

Keywords: Nonspecific binding; Parking problem; Protein–polymer interactions; Thrombin–heparin system

References

  1. J Biol Chem. 2013 Jan 4;288(1):223-33 - PubMed
  2. Arch Biochem. 1946 Jan;9:109-17 - PubMed
  3. Biopolymers. 1979 Aug;18(8):2037-50 - PubMed
  4. J Mol Biol. 1974 Jun 25;86(2):469-89 - PubMed
  5. Curr Pharm Des. 2012;18(14):2027-35 - PubMed
  6. Biophys Chem. 1978 Sep;8(4):327-39 - PubMed
  7. J Theor Biol. 2000 Apr 21;203(4):407-18 - PubMed
  8. Proc Natl Acad Sci U S A. 1980 May;77(5):2616-20 - PubMed
  9. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3186-90 - PubMed
  10. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5518-22 - PubMed
  11. J Biol Chem. 1973 Sep 25;248(18):6490-505 - PubMed
  12. Biophys Chem. 1998 Apr 20;71(2-3):185-98 - PubMed
  13. J Biol Chem. 1994 Jan 14;269(2):1301-5 - PubMed
  14. Biochem J. 1978 Nov 1;175(2):691-701 - PubMed
  15. Arch Biochem Biophys. 1987 Jul;256(1):78-89 - PubMed
  16. Biochim Biophys Acta. 1986 May 12;871(1):85-92 - PubMed
  17. Biochim Biophys Acta. 1985 Dec 13;843(3):159-63 - PubMed
  18. Mol Cell Biochem. 1982 Oct 29;48(3):161-82 - PubMed
  19. J Biol Chem. 1986 Mar 5;261(7):3214-21 - PubMed
  20. Nature. 1978 Aug 24;274(5673):825-6 - PubMed
  21. J Biol Chem. 1981 Nov 10;256(21):11065-72 - PubMed
  22. J Biol Chem. 1991 Apr 5;266(10):6342-52 - PubMed
  23. J Biol Chem. 1976 Nov 25;251(22):7240-50 - PubMed
  24. J Biol Chem. 2005 Jan 28;280(4):2745-9 - PubMed
  25. Biochemistry. 1967 Oct;6(10 ):3293-306 - PubMed
  26. Thromb Res. 1980 Aug 15-Sep 1;19(4-5):711-8 - PubMed
  27. Biochim Biophys Acta. 2012 Jul;1820(7):989-1000 - PubMed
  28. Circ Res. 2012 Sep 14;111(7):920-9 - PubMed
  29. J Biol Chem. 1988 Feb 5;263(4):1698-708 - PubMed

Publication Types