Display options
Share it on

Biotechnol Biofuels. 2017 Apr 24;10:106. doi: 10.1186/s13068-017-0790-4. eCollection 2017.

Process relevant screening of cellulolytic organisms for consolidated bioprocessing.

Biotechnology for biofuels

Elena Antonov, Ivan Schlembach, Lars Regestein, Miriam A Rosenbaum, Jochen Büchs

Affiliations

  1. AVT?Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany.
  2. Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.

PMID: 28450887 PMCID: PMC5402656 DOI: 10.1186/s13068-017-0790-4

Abstract

BACKGROUND: Although the biocatalytic conversion of cellulosic biomass could replace fossil oil for the production of various compounds, it is often not economically viable due to the high costs of cellulolytic enzymes. One possibility to reduce costs is consolidated bioprocessing (CBP), integrating cellulase production, hydrolysis of cellulose, and the fermentation of the released sugars to the desired product into one process step. To establish such a process, the most suitable cellulase-producing organism has to be identified. Thereby, it is crucial to evaluate the candidates under target process conditions. In this work, the chosen model process was the conversion of cellulose to the platform chemical itaconic acid by a mixed culture of a cellulolytic fungus with

RESULTS: The screening of five different cellulase producers with the freeze assay identified

CONCLUSIONS: With two complementary methods to quantify cellulase activity and the dynamics of cellulase production for CBP applications,

Keywords: Cellulase activity; Cellulose; Consolidated bioprocessing; Freeze assay; Itaconic acid; Penicillium verruculosum; Respiration activity; Trichoderma reesei

References

  1. Microbiology. 2005 Jan;151(Pt 1):135-43 - PubMed
  2. Bioresour Technol. 2010 Oct;101(20):7995-8000 - PubMed
  3. Appl Biochem Biotechnol. 2004 Spring;113-116:389-401 - PubMed
  4. Biotechnol Bioeng. 1990 Jul;36(3):275-87 - PubMed
  5. Appl Microbiol Biotechnol. 2012 Dec;96(5):1209-16 - PubMed
  6. Biotechnol J. 2011 Jan;6(1):74-85 - PubMed
  7. Trends Biochem Sci. 2002 Jan;27(1):54-6 - PubMed
  8. Appl Environ Microbiol. 2011 Oct;77(19):7007-15 - PubMed
  9. Biotechnol Adv. 2006 Sep-Oct;24(5):452-81 - PubMed
  10. Microbiology. 2012 Jan;158(Pt 1):58-68 - PubMed
  11. Microb Cell Fact. 2016 Sep 29;15(1):164 - PubMed
  12. Anal Biochem. 1972 May;47(1):273-9 - PubMed
  13. Biotechnol Bioeng. 2006 Aug 20;94(6):1122-8 - PubMed
  14. Biotechnol Bioeng. 1979 Feb;21(2):181-91 - PubMed
  15. Folia Microbiol (Praha). 1981;26(4):303-8 - PubMed
  16. Biochem J. 1955 May;60(1):139-47 - PubMed
  17. Curr Opin Biotechnol. 2012 Jun;23(3):396-405 - PubMed
  18. J Appl Bacteriol. 1977 Feb;42(1):65-75 - PubMed
  19. Bioresour Technol. 2009 Feb;100(3):1350-7 - PubMed
  20. Biotechnol Bioeng. 2012 Apr;109(4):1083-7 - PubMed
  21. Appl Microbiol Biotechnol. 2014 Dec;98(24):10005-12 - PubMed
  22. Nat Biotechnol. 2011 Oct 02;29(10):922-7 - PubMed
  23. Bioresour Technol. 2012 Mar;107:243-50 - PubMed
  24. Biotechnol Biofuels. 2010 Aug 18;3:18 - PubMed
  25. Appl Microbiol Biotechnol. 2015 Oct;99(19):7937-44 - PubMed
  26. Biotechnol Bioeng. 2004 Dec 30;88(7):832-7 - PubMed
  27. Biochem Eng J. 2001 Mar;7(2):157-162 - PubMed
  28. Anal Biochem. 1969 Dec;32(3):420-4 - PubMed
  29. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  30. Biotechnol Adv. 2009 Nov-Dec;27(6):833-48 - PubMed
  31. Appl Microbiol Biotechnol. 2001 Aug;56(3-4):289-95 - PubMed
  32. Biotechnol Bioeng. 1996 Aug 20;51(4):375-83 - PubMed
  33. Biotechnol Prog. 2006 Mar-Apr;22(2):493-8 - PubMed
  34. Biotechnol Bioeng. 1982 Mar;24(3):737-42 - PubMed
  35. Biotechnol Prog. 1999 Oct 1;15(5):804-816 - PubMed

Publication Types