Display options
Share it on

Bot Stud. 2014 Dec;55(1):9. doi: 10.1186/1999-3110-55-9. Epub 2014 Jan 20.

Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L.

Botanical studies

Jing Kong, Yuanjie Dong, Linlin Xu, Shuang Liu, Xiaoying Bai

Affiliations

  1. College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
  2. College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China. [email protected].

PMID: 28510913 PMCID: PMC5432746 DOI: 10.1186/1999-3110-55-9

Abstract

BACKGROUND: The aim of this experiment was to analyze the alleviation mechanism of exogenous salicylic acid (SA) and sodium nitroprusside (SNP, a nitric oxide donor) on peanut seedlings under Fe deficiency. The effects of SA and SNP on iron uptake and availability, ions balance and oxidant damage were studied with foliar application of exogenous 1.0 mM SA (SA) or 2.5 mM SNP (SNP) or 0.5 mM SA+1.25 mM SNP [1/2(SA+SNP)] or 1.0 mM SA+2.5 mM SNP (SA+SNP).

RESULTS: The results showed that after 21 days treatment, the peanut seedlings growing under iron deficiency conditions exhibited leaf interveinal chlorosis, and this iron-deficiency induced symptom was prevented by foliar application of SA, SNP, 1/2 (SA+SNP), especially SA+SNP. The increased contents of chlorophyll and active iron, and increased Fe accumulation in cell organelles were observed in SA+SNP treated young leaves, suggesting that an improvement of iron availability in plants. Moreover, the improved nutrient solution pH, increased H

CONCLUSIONS: These results indicated that the interaction of SA and SNP promoted Fe uptake, translocation and activation; modulated the balance of mineral elements; and protected Fe deficiency induced oxidative stress. Therefore, SA and SNP had synergistic effects in alleviating chlorosis induced by Fe deficiency.

Keywords: Active iron; Antioxidant enzymes; Arachis hypogaea L.; Mineral elements; SA; SNP

References

  1. Anal Biochem. 1975 Nov;69(1):261-7 - PubMed
  2. Trends Plant Sci. 2005 Jan;10(1):4-8 - PubMed
  3. Plant Physiol. 1992 Apr;98(4):1222-7 - PubMed
  4. Plant Physiol Biochem. 2006 Apr;44(4):226-35 - PubMed
  5. J Exp Bot. 2000 Apr;51(345):659-68 - PubMed
  6. Environ Pollut. 2007 Jun;147(3):743-9 - PubMed
  7. Plant Sci. 2000 Aug 8;157(1):113-128 - PubMed
  8. Plant Physiol. 1977 Oct;60(4):606-8 - PubMed
  9. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849-55 - PubMed
  10. Trends Plant Sci. 2002 Sep;7(9):405-10 - PubMed
  11. Anal Biochem. 1969 Feb;27(2):292-9 - PubMed
  12. Plant Physiol. 2007 Aug;144(4):1763-76 - PubMed
  13. Plant Physiol. 1993 Sep;103(1):7-13 - PubMed
  14. Plant J. 2007 Dec;52(5):949-60 - PubMed
  15. Plant Physiol. 2010 Oct;154(2):810-9 - PubMed
  16. Plant Physiol. 2003 May;132(1):272-81 - PubMed
  17. Plant Physiol. 2007 May;144(1):278-85 - PubMed
  18. J Exp Bot. 2007;58(6):1397-405 - PubMed
  19. Arch Biochem Biophys. 1968 Apr;125(1):189-98 - PubMed
  20. J Plant Res. 2003 Dec;116(6):483-505 - PubMed
  21. J Plant Physiol. 2010 Aug 15;167(12):996-1002 - PubMed
  22. J Plant Physiol. 2007 May;164(5):536-43 - PubMed
  23. J Plant Physiol. 2007 Jun;164(6):728-36 - PubMed
  24. New Phytol. 2009;183(4):1072-84 - PubMed
  25. Plant Cell. 2002 Jun;14(6):1223-33 - PubMed
  26. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  27. J Plant Physiol. 2003 May;160(5):485-92 - PubMed
  28. Photosynth Res. 2000;63(1):9-21 - PubMed
  29. Plant Physiol. 2002 Dec;130(4):1852-9 - PubMed
  30. Plant Cell Environ. 2006 May;29(5):888-97 - PubMed
  31. Physiol Plant. 2009 Jul;136(3):274-83 - PubMed

Publication Types