Display options
Share it on

Chem Sci. 2017 Jan 01;8(1):559-566. doi: 10.1039/c6sc02088g. Epub 2016 Sep 05.

Specific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells.

Chemical science

Sebastian Hauke, Alexander von Appen, Tooba Quidwai, Jonas Ries, Richard Wombacher

Affiliations

  1. Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls-University Heidelberg , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany . Email: [email protected] ; ; Tel: +49 6221 544879.
  2. European Molecular Biology Laboratory , Meyerhofstraße 1 , 69117 Heidelberg , Germany.

PMID: 28451202 PMCID: PMC5351804 DOI: 10.1039/c6sc02088g

Abstract

We present new fluorophore-conjugates for dual-color photoactivation and super-resolution imaging inside live mammalian cells. These custom-designed, photo-caged Q-rhodamines and fluoresceins are cell-permeable, bright and localize specifically to intracellular targets. We utilized established orthogonal protein labeling strategies to precisely attach the photoactivatable fluorophores to proteins with subsequent activation of fluorescence by irradiation with UV light. That way, diffusive cytosolic proteins, histone proteins as well as filigree mitochondrial networks and focal adhesion proteins were visualized inside living cells. We applied the new photoactivatable probes in inverse fluorescence recovery after photo-bleaching (iFRAP) experiments, gaining real-time access to protein dynamics from live biological settings with resolution in space and time. Finally, we used the caged Q-rhodamine for photo-activated localization microscopy (PALM) on both fixed and live mammalian cells, where the superior molecular brightness and photo-stability directly resulted in improved localization precisions for different protein targets.

References

  1. Nat Methods. 2009 Feb;6(2):153-9 - PubMed
  2. Nat Methods. 2008 Nov;5(11):943-5 - PubMed
  3. ACS Chem Biol. 2010 May 21;5(5):507-16 - PubMed
  4. Nat Methods. 2010 Sep;7(9):717-9 - PubMed
  5. Nat Commun. 2016 Jan 29;7:10372 - PubMed
  6. J Am Chem Soc. 2004 Apr 14;126(14):4653-63 - PubMed
  7. Nat Methods. 2005 Apr;2(4):255-7 - PubMed
  8. Chembiochem. 2007 May 7;8(7):767-74 - PubMed
  9. J Cell Biol. 2001 Jun 25;153(7):1341-53 - PubMed
  10. Angew Chem Int Ed Engl. 2010 May 3;49(20):3520-3 - PubMed
  11. Angew Chem Int Ed Engl. 2011 Nov 18;50(47):11206-9 - PubMed
  12. Science. 2002 Sep 13;297(5588):1873-7 - PubMed
  13. Annu Rev Biophys. 2014;43:303-29 - PubMed
  14. J Am Chem Soc. 2010 Nov 3;132(43):15099-101 - PubMed
  15. Trends Cell Biol. 1999 Jul;9(7):284-7 - PubMed
  16. Mol Cell. 2015 May 21;58(4):644-59 - PubMed
  17. Nat Rev Mol Cell Biol. 2008 Dec;9(12):929-43 - PubMed
  18. Biophys J. 2002 May;82(5):2775-83 - PubMed
  19. Bioconjug Chem. 1998 Mar-Apr;9(2):143-51 - PubMed
  20. Bioorg Med Chem Lett. 2001 Aug 20;11(16):2181-3 - PubMed
  21. Nat Biotechnol. 2001 Jul;19(7):645-9 - PubMed
  22. Biophys J. 1976 Sep;16(9):1055-69 - PubMed
  23. Science. 2004 Nov 19;306(5700):1370-3 - PubMed
  24. J Cell Biol. 1989 Aug;109(2):637-52 - PubMed
  25. Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17370-5 - PubMed
  26. Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10216-9 - PubMed
  27. Nat Cell Biol. 2003 Sep;Suppl:S7-14 - PubMed
  28. J Am Chem Soc. 2007 May 30;129(21):6696-7 - PubMed
  29. ACS Chem Biol. 2012 Feb 17;7(2):289-93 - PubMed
  30. Nat Rev Mol Cell Biol. 2005 Nov;6(11):885-91 - PubMed
  31. IUBMB Life. 2009 Nov;61(11):1029-42 - PubMed
  32. ACS Chem Biol. 2008 Jun 20;3(6):373-82 - PubMed
  33. Annu Rev Cell Dev Biol. 2010;26:285-314 - PubMed
  34. Trends Cell Biol. 2009 Nov;19(11):555-65 - PubMed
  35. Methods Enzymol. 2010;475:27-59 - PubMed
  36. J Biophotonics. 2011 Jun;4(6):391-402 - PubMed
  37. Science. 1996 Nov 8;274(5289):966-9 - PubMed
  38. J Phys Chem Lett. 2012 Sep 6;3(17):2379-85 - PubMed
  39. Science. 2006 Sep 15;313(5793):1642-5 - PubMed

Publication Types