Display options
Share it on

Chem Sci. 2017 Feb 01;8(2):1169-1177. doi: 10.1039/c6sc02981g. Epub 2016 Oct 05.

Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region.

Chemical science

Manabendra Das, Yang Du, Jonas S Mortensen, Orquidea Ribeiro, Parameswaran Hariharan, Lan Guan, Claus J Loland, Brian K Kobilka, Bernadette Byrne, Pil Seok Chae

Affiliations

  1. Department of Bionanotechnology , Hanyang University , Ansan , 15588 , Korea . Email: [email protected].
  2. Molecular and Cellular Physiology , Stanford , CA 94305 , USA . Email: [email protected].
  3. Department of Neuroscience and Pharmacology , University of Copenhagen , DK-2200 Copenhagen , Denmark . Email: [email protected].
  4. Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK . Email: [email protected].
  5. Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA . Email: [email protected].

PMID: 28451257 PMCID: PMC5369527 DOI: 10.1039/c6sc02981g

Abstract

Amphiphile selection is a crucial step in membrane protein structural and functional study. As conventional detergents have limited scope and utility, novel agents with enhanced efficacy need to be developed. Although a large number of novel agents have been reported, so far there has been no systematically designed comparative study of the protein stabilization efficacy of stereo-isomeric amphiphiles. Here we designed and prepared a novel class of stereo-isomeric amphiphiles, designated butane-1,2,3,4-tetraol-based maltosides (BTMs). These stereoisomers showed markedly different behaviour for most of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing the importance of the balance between hydrophobicity and hydrophilicity in detergent design. The stereo-isomeric difference in detergent efficacy observed provides an important design principle for the development of novel amphiphiles for membrane protein manipulation.

References

  1. Chem Sci. 2016 Mar 1;7(3):1933-1939 - PubMed
  2. Science. 2014 May 30;344(6187):992-7 - PubMed
  3. Science. 2015 Mar 13;347(6227):1256-9 - PubMed
  4. Nature. 2012 Feb 22;482(7386):552-6 - PubMed
  5. Nature. 2015 Mar 12;519(7542):247-50 - PubMed
  6. Nature. 2013 Oct 24;502(7472):575-9 - PubMed
  7. Nat Commun. 2016 Apr 18;7:11336 - PubMed
  8. Nat Rev Drug Discov. 2006 Dec;5(12):993-6 - PubMed
  9. Chemistry. 2012 Jul 27;18(31):9485-90 - PubMed
  10. Methods. 2007 Apr;41(4):388-97 - PubMed
  11. Biochemistry. 2002 Feb 26;41(8):2475-84 - PubMed
  12. Protein Expr Purif. 2010 Jul;72(1):139-46 - PubMed
  13. Nature. 2012 Mar 21;485(7398):321-6 - PubMed
  14. Nat Commun. 2015 Oct 13;6:8545 - PubMed
  15. Langmuir. 2013 Dec 23;29(51):15794-804 - PubMed
  16. Protein Sci. 2012 Sep;21(9):1358-65 - PubMed
  17. Nat Methods. 2010 Dec;7(12):1003-8 - PubMed
  18. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):E1203-11 - PubMed
  19. Nature. 2015 Jul 30;523(7562):561-7 - PubMed
  20. Structure. 2011 Jan 12;19(1):17-25 - PubMed
  21. Nature. 2014 Aug 21;512(7514):270-5 - PubMed
  22. Mol Pharmacol. 2002 Jan;61(1):65-72 - PubMed
  23. J Am Chem Soc. 2016 Mar 23;138(11):3789-96 - PubMed
  24. Protein Cell. 2014 Sep;5(9):658-72 - PubMed
  25. Biochemistry. 2012 Aug 14;51(32):6266-88 - PubMed
  26. J Biol Chem. 2001 Aug 31;276(35):32403-6 - PubMed
  27. Methods. 2011 Dec;55(4):310-7 - PubMed
  28. Chem Asian J. 2014 Feb;9(2):632-8 - PubMed
  29. Nature. 2015 Aug 27;524(7566):433-8 - PubMed
  30. Angew Chem Int Ed Engl. 2007;46(37):7023-5 - PubMed
  31. Science. 2007 Nov 23;318(5854):1266-73 - PubMed
  32. Nat Methods. 2013 Aug;10(8):759-61 - PubMed
  33. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6305-10 - PubMed
  34. Mol Biosyst. 2010;6:89-94 - PubMed
  35. Nature. 1998 Mar 26;392(6674):353-8 - PubMed
  36. Nature. 2015 Apr 23;520(7548):511-7 - PubMed
  37. Protein Sci. 2008 Mar;17(3):466-72 - PubMed
  38. Annu Rev Biophys Biomol Struct. 2004;33:25-51 - PubMed
  39. Nature. 2005 Sep 8;437(7056):215-23 - PubMed
  40. Nat Chem Biol. 2006 Aug;2(8):417-22 - PubMed
  41. J Bacteriol. 2014 Sep;196(17):3134-9 - PubMed
  42. Science. 2014 Apr 18;344(6181):304-7 - PubMed
  43. Trends Biochem Sci. 2007 Jun;32(6):259-70 - PubMed
  44. Anal Biochem. 1984 Jun;139(2):408-12 - PubMed
  45. Chemistry. 2013 Nov 11;19(46):15645-51 - PubMed
  46. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10744-9 - PubMed
  47. Chem Commun (Camb). 2013 Mar 21;49(23):2287-9 - PubMed
  48. Biochim Biophys Acta. 2012 Aug;1817(8):1506-15 - PubMed
  49. Nature. 2011 Jan 13;469(7329):175-80 - PubMed
  50. Biochemistry. 2015 Sep 29;54(38):5849-55 - PubMed
  51. Nat Commun. 2014;5:3009 - PubMed
  52. Analyst. 2015 May 7;140(9):3157-63 - PubMed
  53. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3603-8 - PubMed
  54. Structure. 2008 Jun;16(6):897-905 - PubMed

Publication Types

Grant support