Display options
Share it on

ACS Photonics. 2016 Dec 21;3(12):2445-2452. doi: 10.1021/acsphotonics.6b00694. Epub 2016 Nov 08.

Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

ACS photonics

Marco A Allodi, Peter D Dahlberg, Richard J Mazuski, Hunter C Davis, John P Otto, Gregory S Engel

Affiliations

  1. Department of Chemistry, The Institute for Biophysical Dynamics, The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA.
  2. Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA.

PMID: 28451625 PMCID: PMC5403159 DOI: 10.1021/acsphotonics.6b00694

Abstract

We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using

Keywords: Exciton Imaging; Pulse-front Tilt; Spectral Interferometry; Superresolution Imaging; Ultrafast Microscopy

References

  1. Opt Lett. 2012 Jun 15;37(12):2373-5 - PubMed
  2. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20402-7 - PubMed
  3. Nat Nanotechnol. 2014 Sep;9(9):682-6 - PubMed
  4. Nat Commun. 2015 Jun 23;6:7372 - PubMed
  5. Science. 1992 Jul 10;257(5067):189-95 - PubMed
  6. Nat Chem. 2015 Oct;7(10):785-92 - PubMed
  7. Nature. 1972 Jun 30;237(5357):510-2 - PubMed
  8. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6857-61 - PubMed
  9. Nature. 2010 Sep 23;467(7314):440-3 - PubMed
  10. J Phys Chem Lett. 2013 Oct 11;4(21):3636-3640 - PubMed
  11. Phys Rev Lett. 1989 Jan 23;62(4):458-461 - PubMed
  12. Clin Orthop Relat Res. 1989 Jul;(244):3-6 - PubMed
  13. Nature. 2007 Apr 12;446(7137):782-6 - PubMed
  14. Nat Chem. 2015 Dec;7(12):980-6 - PubMed
  15. Chemphyschem. 2012 Jun 4;13(8):1986-2000 - PubMed
  16. Opt Express. 2005 Oct 17;13(21):8642-61 - PubMed
  17. Nature. 1993 Nov 4;366(6450):44-8 - PubMed
  18. Opt Express. 2004 Sep 20;12(19):4399-410 - PubMed
  19. PLoS One. 2010 Dec 20;5(12):e15710 - PubMed
  20. J Chem Phys. 2015 Dec 21;143(23):234204 - PubMed
  21. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8206-10 - PubMed
  22. J Chem Phys. 2013 Aug 28;139(8):084201 - PubMed
  23. Opt Lett. 1994 Jun 1;19(11):780-2 - PubMed
  24. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6 - PubMed
  25. Nat Methods. 2006 Oct;3(10):793-5 - PubMed
  26. Nature. 2010 Feb 4;463(7281):644-7 - PubMed
  27. Science. 2015 Aug 28;349(6251):aab3500 - PubMed
  28. Science. 2006 Sep 15;313(5793):1642-5 - PubMed

Publication Types

Grant support