Display options
Share it on

Nat Commun. 2017 Apr 28;8:15064. doi: 10.1038/ncomms15064.

Segregation of liquid crystal mixtures in topological defects.

Nature communications

Mohammad Rahimi, Hadi Ramezani-Dakhel, Rui Zhang, Abelardo Ramirez-Hernandez, Nicholas L Abbott, Juan J de Pablo

Affiliations

  1. Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.
  2. Argonne National Laboratory, Argonne, Illinois 60439, USA.
  3. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

PMID: 28452347 PMCID: PMC5414351 DOI: 10.1038/ncomms15064

Abstract

The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring. It is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.

References

  1. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):504-10 - PubMed
  2. Phys Rev Lett. 1987 Nov 30;59(22):2582-2584 - PubMed
  3. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5297-302 - PubMed
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 1):041701 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 1):051702 - PubMed
  6. Phys Rev Lett. 2002 Mar 11;88(10):105504 - PubMed
  7. Chemphyschem. 2009 Jan 12;10(1):125-36 - PubMed
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051703 - PubMed
  9. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Jul;52(1):718-722 - PubMed
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 1):021703 - PubMed
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):011711 - PubMed
  12. Science. 2011 Jun 10;332(6035):1297-300 - PubMed
  13. Phys Rev Lett. 2016 Apr 8;116(14 ):147801 - PubMed
  14. Phys Rev Lett. 2009 Oct 16;103(16):167801 - PubMed
  15. Phys Rev A. 1991 Aug 15;44(4):2558-2569 - PubMed
  16. Phys Rev Lett. 2000 Nov 27;85(22):4719-22 - PubMed
  17. Science. 1991 Mar 15;251(4999):1336-42 - PubMed
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 1):031607 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041702 - PubMed
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031708 - PubMed
  21. Nat Commun. 2012 Feb 28;3:701 - PubMed
  22. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jul;50(1):358-367 - PubMed
  23. Nat Mater. 2016 Jan;15(1):106-12 - PubMed
  24. Science. 1997 Mar 21;275(5307):1770-3 - PubMed
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 1):030701 - PubMed
  26. Phys Rev Lett. 2007 Oct 12;99(15):157801 - PubMed
  27. Phys Rev Lett. 1986 Dec 8;57(23):2963-2966 - PubMed
  28. J Chem Phys. 2013 May 28;138(20):204901 - PubMed
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031708 - PubMed

Publication Types