Display options
Share it on

Front Neurosci. 2017 May 02;11:136. doi: 10.3389/fnins.2017.00136. eCollection 2017.

Keypress-Based Musical Preference Is Both Individual and Lawful.

Frontiers in neuroscience

Sherri L Livengood, John P Sheppard, Byoung W Kim, Edward C Malthouse, Janet E Bourne, Anne E Barlow, Myung J Lee, Veronica Marin, Kailyn P O'Connor, John G Csernansky, Martin P Block, Anne J Blood, Hans C Breiter

Affiliations

  1. Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA.
  2. Applied Neuromarketing Consortium, Medill, Kellogg, and Feinberg Schools, Northwestern UniversityEvanston, IL, USA.
  3. David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA.
  4. Northwestern University and Massachusetts General Hospital Phenotype Genotype Project in Addiction and Mood DisordersBoston, MA, USA.
  5. Medill Integrated Marketing Communications, Northwestern UniversityEvanston, IL, USA.
  6. Music Department, Bates CollegeLewiston, ME, USA.
  7. KV 265, The Communication of Science through ArtWillow Springs, IL, USA.
  8. Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA.
  9. Mood and Motor Control Laboratory, Department of Psychiatry, Massachusetts General HospitalBoston, MA, USA.
  10. Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General HospitalBoston, MA, USA.
  11. Department of Neurology, Massachusetts General HospitalBoston, MA, USA.

PMID: 28512395 PMCID: PMC5412065 DOI: 10.3389/fnins.2017.00136

Abstract

Musical preference is highly individualized and is an area of active study to develop methods for its quantification. Recently, preference-based behavior, associated with activity in brain reward circuitry, has been shown to follow lawful, quantifiable patterns, despite broad variation across individuals. These patterns, observed using a keypress paradigm with visual stimuli, form the basis for relative preference theory (RPT). Here, we sought to determine if such patterns extend to non-visual domains (i.e., audition) and dynamic stimuli, potentially providing a method to supplement psychometric, physiological, and neuroimaging approaches to preference quantification. For this study, we adapted our keypress paradigm to two sets of stimuli consisting of seventeenth to twenty-first century western art music (Classical) and twentieth to twenty-first century jazz and popular music (Popular). We studied a pilot sample and then a separate primary experimental sample with this paradigm, and used iterative mathematical modeling to determine if RPT relationships were observed with high

Keywords: approach; avoidance; music; preference; relative preference theory; reward

References

  1. Hum Brain Mapp. 2006 Mar;27(3):239-50 - PubMed
  2. Nature. 2003 Jun 12;423(6941):689 - PubMed
  3. Proc Natl Acad Sci U S A. 2013 Jun 18;110 Suppl 2:10430-7 - PubMed
  4. Cereb Cortex. 2012 Dec;22(12):2769-83 - PubMed
  5. Science. 2004 Oct 15;306(5695):447-52 - PubMed
  6. Biol Rev Camb Philos Soc. 2001 May;76(2):161-209 - PubMed
  7. Curr Biol. 2014 Mar 17;24(6):699-704 - PubMed
  8. Br J Psychol. 2007 May;98(Pt 2):175-85 - PubMed
  9. Science. 1963 May 17;140(3568):808-9 - PubMed
  10. Neuroreport. 2009 Aug 26;20(13):1204-8 - PubMed
  11. Psychiatry Res. 2005 Jun 30;135(3):179-83 - PubMed
  12. PLoS One. 2015 Sep 22;10(9):e0135216 - PubMed
  13. Neuroimage. 2003 Sep;20(1):378-84 - PubMed
  14. J Neurosci. 2003 Jul 23;23(16):6475-9 - PubMed
  15. J Exp Anal Behav. 1961 Jul;4:267-72 - PubMed
  16. Neuron. 2011 Sep 22;71(6):1141-52 - PubMed
  17. Ann N Y Acad Sci. 2009 Mar;1156:211-31 - PubMed
  18. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7337-E7345 - PubMed
  19. PLoS Comput Biol. 2009 Mar;5(3):e1000334 - PubMed
  20. Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11818-23 - PubMed
  21. Neuroimage. 2010 Feb 1;49(3):2687-96 - PubMed
  22. Trends Cogn Sci. 2010 Mar;14(3):131-7 - PubMed
  23. Neuron. 2001 May;30(2):619-39 - PubMed
  24. PLoS One. 2011;6(11):e27241 - PubMed
  25. Science. 2013 Apr 12;340(6129):216-9 - PubMed
  26. Nat Rev Neurosci. 2005 Sep;6(9):691-702 - PubMed
  27. Neural Netw. 2006 Oct;19(8):1302-14 - PubMed
  28. PLoS One. 2009 Jun 24;4(6):e6042 - PubMed
  29. Neuroimage. 2009 Oct 1;47(4):1929-39 - PubMed
  30. Front Hum Neurosci. 2015 Apr 30;9:176 - PubMed
  31. PLoS One. 2010 May 26;5(5):e10613 - PubMed
  32. Ann N Y Acad Sci. 2009 Jul;1169:157-63 - PubMed
  33. Neuron. 2008 May 8;58(3):451-63 - PubMed
  34. Conscious Cogn. 2016 Aug;44:161-78 - PubMed
  35. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3788-92 - PubMed
  36. Science. 1961 Jan 13;133(3446):80-6 - PubMed
  37. Hum Brain Mapp. 2009 Jan;30(1):267-75 - PubMed
  38. J Neurosci. 2002 Dec 15;22(24):10996-1003 - PubMed
  39. J Neurosci. 2013 Sep 4;33(36):14307-17 - PubMed
  40. PLoS Comput Biol. 2012;8(8):e1002634 - PubMed
  41. Front Neurosci. 2017 Jan 26;11:22 - PubMed
  42. Am J Med Genet B Neuropsychiatr Genet. 2009 Sep 5;150B(6):762-81 - PubMed
  43. Neuroimage. 2005 Jun;26(2):389-413 - PubMed
  44. Neuron. 2001 Nov 8;32(3):537-51 - PubMed
  45. Neuroimage. 2010 Feb 1;49(3):2556-63 - PubMed
  46. Front Psychol. 2017 Feb 21;8:122 - PubMed
  47. Nat Neurosci. 2011 Feb;14 (2):257-62 - PubMed
  48. Neuron. 2008 Oct 9;60(1):174-88 - PubMed
  49. J Pers Soc Psychol. 2011 Jun;100(6):1139-57 - PubMed
  50. J Pers Soc Psychol. 2003 Jun;84(6):1236-56 - PubMed
  51. PLoS One. 2012;7(4):e33424 - PubMed
  52. Arch Gen Psychiatry. 2008 Aug;65(8):882-92 - PubMed
  53. Science. 2007 Jan 26;315(5811):515-8 - PubMed
  54. Learn Motiv. 2008 May;39(2):null - PubMed
  55. PLoS One. 2009 Oct 16;4(10):e7487 - PubMed
  56. Nat Neurosci. 2007 Dec;10(12):1625-33 - PubMed

Publication Types